XEROX

Inter- Office Memorandum

To Mesa Users Date May 31, 1978
From Dave Redcll, John Wick Location Palo Alto
Subject Mcsa 4.0 Change Summary Organization SDD/SD

Filed on: [IRIS] <MESA>DOC>SUMMARY40.BRAVO

This memo outlines changes made in Mesa since the last release (October 17, 1977).

References

The following documents can be found on [IRIS]<KMESA>DOCY; all files are in Bravo format.
Hardcopy is available through your support group; in addition, the PRESS filcs MESA40A,
MESA40B, and MESA40C arc a compilation of this matecrial (about 75 pages).

Mecsa 4.0 Change Summary. SUMMARY40.BRAVO

Mesa 4.0 Compiler Update. COMPILER40.BRAVO, ARITHMETIC40.BRAVO

Mesa 4.0 Process Update. PROCESS40.BRAVO

Mesa 4.0 Binder Update. BINDER40.BRAV6

Mesa 4.0 System Updatc. SYSTEM40.BRAVO

Mesa 4.0 Microcode Update. MICROCODE40.BRAVO

Mesa 4.0 Debugger Update. ‘DEBUGGER40.BRAVO
The scction on processes is a prcliminary draft of a new chapter of the Mesa Language

Manual (which will be sent to the printer shortly); thanks are due to Dave Redell and the
Pilot Functional Specification for contributing much of this material.

The MEsA>DOC directory also includes new versions of the Mesa System Documentation and
the Mesa Debugger Documentation (the rclevant PRESS files are SYSTEM1, SYSTEM2, and
DEBUGGER).

Highlights

The primary emphasis in this rclcase has been on three arcas: implementation of features
required by Pilot and Dstar applications for effective usc of the new machine architecture
(processes, monitors, long pointers, ctc.), reduction of overhead in the basic system structures
and improved performance of the Mcsa runtime cnvironment (faster microcode, smaller
global frames, morc cfficient mcmory management), and cxtension of the debugger’s
capabilitics (primarily an interpreter for a subsct of the Mcsa language).

Mesa 4.0 Change Summary 2

The primary impact of Mecsa 4.0 on cxisting systems is in the arca of concurrent
programming.. A brief intoduction to the ncw process mechanism appears below., It is
intended to present cnough information to enable programmers to experiment with the new
features of the language and the runtime system. However, before attempting to revise or
redesign existing systems to use these facilities, programmers are urged to carcfully examine
the matcrial in the Mesa 4.0 Process Update and the Mesa System Documentation.

Warning: Because Pilot will be available soon, the Alto/Mesa operating system software
has not been revised and redesigned to fully cxploit the capabilitics of the new process
mcchanism. In particular, arbitrary preemptive processes arc not supported, and the
restrictions of Mesa 3.0 on processes running at interrupt level still apply.

A Brief Introduction to Processes in Mesa

Mesa 4.0 introduces three new facilities for concurrent programming:
Processes, which provide the basic framework for concurrent programming,
Monitors, which provide the fundamental interprocess synchronization facility.

Condition variables, which build upon monitors to p10v1de more flexible forms of
interprocess synchronization,

As compared with the mechanisms provided in carlicer releases of Mesa, the new concurrency
facilities are more cxtensive, and are much more thoroughly intcgrated into the language.
The purpose of the new facilities is to allow casy use of concurrency as a basic control
structure in Mcsa programs. Concurrency can be an important consideration in progam
design, especially when input/output or user interactions may causc unpredictable delays.

Processes

For cxample, consider an application with a front-end routinc providing interactive
composition and editing of input lines:

ReadLine: PROCEDURE [s: STRING] RETURNS [CARDINAL]

BEGIN

C: CHARACTER;

slength « 0;

DO
¢ « ReadChar[];
IF ControlCharacter{¢] THEN DoAction[¢]
ELSE AppendChar[s, c];
IF ¢ =CR THEN RETURN[s.length] ;
ENDLOOP;

END;

Thus, the call:

n ¢« ReadLine[s];
would collect a linc of user typing up to a CR and rcturn it to the caller. Of course, the
caller cannot get anything clse accomplished during the type-in of the line, [f there was

anything clse that nceded doing, it could be donc concurrently with the type-in by forking
to ReadLine instcad of calling it:

Mesa 4.0 Change Summary 3

p ¢ FORK ReadLine[s];
<{concurrent computation>
n ¢ JON p;

This would allow the statements labeled <concurrent computation> to procecd in parallel with
user typing. The FORK statcment spawns a new process whose result type matches that of
ReadLine. (Readline is rcferred to as the "root procedure” of the new process.)

p: PROCESS RETURNS [CARDINAL] ;

Later, the results are retrieved by the JOIN statement, which also deletes the spawned process.
Obviously, this must not occur until both processes are ready (i.c. have rcached the JoIN and
the RETURN, respectively); this rendevous is synchronized automatically by the process
facility.

Note that the types of the arguments and results of ReadLine are a/ways checked at compile
time, whether it is called or forked.

Monitors

Further investigation of ReadLine reveals another example of interprocess intcraction; the
ReadChar routine it uses inspects an input character buffer, which is filled by an
independent dedicated keyboard process. (Such dedicated processes replace the "hard
processes” of carlier releases of Mesa) To avoid conflict ‘over the buffer, appropriate
synchronization is needed. A monitor can be used to insure that ncither process will ever
access the buffer while the other has it in a "bad state” (e.g. inconsistent pointers, etc.). The
keyboard monitor might look like: '

Keyboard: MONITOR =

BEGIN

buffer: STRING;

ReadChar. PUBLIC ENTRY PROCEDURE RETURNS [C: CHARACTER] =
BEGIN
C ¢« <get character from buffer>
END;

PutChar PUBLIC ENTRY PROCEDURE [Cc: CHARACTER] =
BEGIN
<{put C in buffer>
END;

END.

The keyword MONITOR confers upon the Keyboard module some spcecial properties. The
most fundamental is the presence of entry procedures, identificd by the keyword ENTRY.
Thesc procedures have the property that calls on them are mutually exclusive; that is, a new
call cannot commence while any previous call is in progress. In cffect, the monitor module
is madc temporarily private to a single process, and any other processes wishing to usc it are
dclayed until the first process is finished. In this cxamplc, the client’s call to ReadChar and
the keyboard process’ call to PutChar arc guarantced mutually cxclusive access to the buffer.,

Condition variables

As long as it finds some characters in the buffer, ReadChar as shown abovce will work
correctly without conflict over the buffer, If it finds the buffer empty, however, it cannot

Mesa 4.0 Change Summary 4

simply loop in the monitor waiting for a character to arrive; not only would this be
incfficient, but it would lock out the keyboard process from cver delivering the desired next
character! What is nccded is some way for ReadChar to pause and rclease the mutual
cxclusion temporarily until PutChar has declivered the next character. This facility is
provided by condition variables. Condition variables scerve as the basic building blocks out
of which thc programmer can fashion whatever gencralized synchronization machinery
proves necessary in a given situation. For cxample, the Keyboard monitor can be modified
to use the wam and NOTIFY opcrations on condition variables as follows:

Keyboard: MONITOR =
BEGIN
buffer: STRING;
bufferNonEmpty: CONDITION;
ReadChar: PUBLIC ENTRY PROCEDURE RETURNS [C: CHARACTER] =
BEGIN
WHILE <buffer empty> DO
WAIT bufferNonEmpty
ENDLOOP;
C ¢ <get character from buffer>
END;
PutChar. PUBLIC ENTRY PROCEDURE [cC: CHARACTER] =
BEGIN
<put C in buffer>
NOTIFY bufferNonEmpty;
END;
END.

Note that the WAIT statement is cmbedded in a WHILE- loop which repeatedly tests for the
desired condition. This is the only recommended usage paitern for the WAIT statement. In
particular, it would have been incorrect to replace the loop above by:

IF <buffer empty> THEN WAIT bufferNonEmpty;
C ¢ <get character from buffer>

This rule exemplifies a fundamental property of condition variables in Mesa: a condition
variable always corresponds to some Boolean cxpression describing a desired state of the
monitor data, and suggests that any. interested process(es) might do well to reevaluate it. [t
does not guarantee that the Boolean expression has become true, hence programmers should
never write programs (such as the fragment above) that implicitly assume the truth of the
desired condition upon awakecning from a WAIT.

Priorities

The sct of existing processes grows and shrinks dynamically as FORKs and JOINs occur. At
any given timec, some of the processes are ready and compete for usc of the processor. The
choice of which onc to run is donc on the basis of priority. A process starts lifc with the
priority of its parcnt (who cxccuted the FORK), and may change its own priority by calling
SetPriority.

CAUTION: Use of multiple priorities in the Alto/ Mesa implementation is severely
restricted. Any process running at other than the default priority (currently, 1) is forbidden
to use many of the standard runtime support featurcs of the Mesa cnvironment. In practice,
this mecans that non-standard prioritics should be used only for interrupt handling, while all

Mesa 4.0 Change Summary 5

"normal” processing takes place concurrently at the default priority level,
More general features

More complex situations will sometimes require more flexible use of the concurrency
facilitics. Such use involves more complicated rules and syntactic constructs, which are
described in the Mesa 4.0 Process Update.

Distribution:
Mesa Users
Mesa Group

Inter- Office Memorandum

To Mesa Users | Date May 31, 1978
From Ed Satterthwaite Location Palo Alto
Subject Mecsa 4.0 Compiler Update Organization SDD/SD

XEROX

Filed on: [IRIS]<MESA>DOC> COMPILER40.BRAVO

This memo describes changes to the Mcsa language and compiler that have been made since
the last release (October 17, 1977). As usual, the list of compiler-reclated change requests
closed by Mesa 4.0 will appear scparately as part of the Software Release Description.

The language accepted by the Mesa 4.0 compiler has several significant extensions and a few
minor changes. It fcaturcs a process mechanism, enhanced arithmetic capabilities, long and
base-relative pointers, and more general block structure.

Because of changes in symbol table and BCD formats, all cxisting Mesa programs must be
recompiled. There arc minor incompatibilitics with Mcsa 3.0 at the source Ievel in the areas
of signcd/unsigned arithmetic and the scope ‘of OPEN in an itcrative statement. These
incompatibilitics should havec ncgligible impact on existing programs. The syntax and
semantics of declaring (but not calling) machine-coded procedurcs have changed
substantially.

Page and scction numbers in this update not otherwise qualificd refer to the Mesa Language
Manual, Version 3.0, © The BNF descriptions of new or revised syntax follow the
conventions introduced in that manual. For phrase classes used but not redcfined here, see
its Appendix D. Revisions of phrase class definitions are cumulative; except as noted, the
appcarance of ".." as an alternativc indicates that an cxisting dcfinition is being augmented.
A dcfinition without "..." supcrsedes any definition of the same phrase class in the manual.

Arithmetic

Mesa 4.0 supports doublc-precision integer arithmetic (type LONG INTEGER) and provides
somc help with floating- point computations (type REAL). In conjunction with these changes,
the rules governing combination of signed and unsigned values have been more carcfully
defined (scc the Appendix to this memo).

Syntax

PredefinedType := INTEGER | CARDINAL | LONG INTEGER | REAL |
BOOLEAN | CHARACTER | STRING | UNSPECIFIED | WORD

Primary = .. | identifier [Expression] | LONG [Expression]

Mesa 4.0 Compiler Update 2

Signed and Unsigned Arithmetic

The rules governing the use of signed and unsigned representations in single- precision
arithmetic have been reformulated. In previous versions of Mesa, conditions under which
an opcration was considered to overflow were not well defined. As a conscquence, options
such as overflow dctection and rcliable range checking were precluded. Mesa 4.0 docs not
offer these options, but it does remedy the defects in the language definition.

The precise rules governing signed/unsigned arithmetic are somewhat lengthy. They appear
in an appendix to this memo with some background information explaining the motivation
and philosophy. In their cffect on the acceptance or rcjection of source text, the new rules
differ little from those in previous versions of Mcsa; the main change is that CARDINAL -
CARDINAL is now assumed to produce a result with unsigned (instead of unknown)
representation (sec Section 2.5.1, pages 10-12). Thus the immediate practical effect of the
new rules is minor; however, programmers should rcad the appendix carcfully so that their
code will work correctly even when it becomes possible to request overflow and range
checks.

The effects of the new rules with respect to subtraction are worth emphasizing., If
both operands have valid signed representations, the result is an INTEGER. If both
have only unsigned represcntations, the result is a CARDINAL and is considered to
overflow if the First operand is less than the sccond.

i INTEGER; m, n: CARDINAL; s, t [0.10);

i « m-n -- should be used only if it is known that m >=n
i € IF m>=nTHEN m- n ELSE - (n- m); -- should be used otherwise
Fm-n>0.. -- comparison (and subtraction) are unsigned
Fmn.. -- a better and safer test

Fs-t<0.. -- comparison (and subtraction) are signed

Range Assertions

The new rules mentioned above assume that there are implicit conversion functions mapping
CARDINAL to INTEGER and vice-versa. In both directions, the "conversion” amounts to an
assertion that the argument is an clement of INTEGER M CARDINAL. The programmer can
make such a range assertion cxplicit. If S is an identifier of a subrange type and e is an
expression with compatible type 7, the form S[e] has the same value as e and is
additionally an asscrtion that e IN [FRST[SNT] .. LAST[SNT]] is TRUE.

Note that this is not cquivalent to LOOPHOLE[¢, S] but is an asscrtion about the range
of a value that alrcady has an appropriate type.

In Mesa 4.0, such assertions must be verified by the programmer, There is not an option to
generate code that checks these assertions, whether implicit or explicit. An asscrtion can be
~used to control the assumed representation of a subexpression; otherwise, it is currently
trcated as a comment by the compiler,

I'xamples

INTEGER[n], IndexType| i-j]

Mesa 4.0 Compiler Update 3

Long Integers

Mecsa 4.0 supports double-precision integers. There is a new predeclared type LONG INTEGER,
values of which occupy two words (32 bits) of storage and range over [-231 . 231). There is
no spccial denotation for LONG INTEGER constants. The type of any deccimal or octal constant
in [216 231) is LonGg INTEGER; smaller constants arc converted as required by context. The
arithmetic operators + -, *, /, MOD, MIN, MAX, (unary) - and ABS have double-precision
cxtensions that perform the mapping

(LONG INTEGER)" —> LONG INTEGER;

furthermore, LONG INTEGERs arc ordcred, and the relational operators 5 #, <,< 5>, >=and IN
have extensions that perform the mapping

(LONG INTEGER)" —> BOOLEAN,

Some fine points:

All LONG INTEGERs have a signed representation; the Mesa 4.0 language does not
provide LONG CARDINAL,

Addition, subtraction, and comparison of LONG INTEGERs is fast; multiplication and
division arc done by software and arc relatively slow.

In Mesa 4.0, it is not possible to declare a type that is a subrange of LONG INTEGER.

Mecsa provides an automatic coercion from any single-precision numeric type (INTEGER,
CARDINAL, ctc.) to LONG INTEGER. This coercion is called widening and is discusscd in more
detail below. It is applied when nccessary to match inherent and target types (e.g., in
assignments). Also, if any operand of an arithmectic or relational opcerator is a LONG INTEGER,
the double-precision operation is used. In most cases, widening of any shorter operands is
automatic. Thus single- and double-precision quantitics can be mixed freely within
expressions to yield double-precision results.

The form LONG[e] explicitly forces the widening of any expression e with a single-precision
numeric type. There are no automatic conversions from LONG INTEGER to any single-
precision type (but see the Mesa 4.0 System Documentation for some standard procedures).

Widening of a single-precision constant is donc at compile-time. Currently, no
other arithmetic or relational opcrations on LONG INTEGERS arc performed at
compile-time, cven if all operands are constant.

Widcning of a single-precision cxpression is substantially more cfficient if that
cxpression has an unsigned representation.
Examples

i: INTEGER;
{i: LONG INTEGER;

¢2: LONG INTEGER =2; -- a compile-time constant

c4: LONG INTEGER =c2%c2; -- not a compile-time constant
ie0; i «iiHl; il «0; i «(iiH)/c2; -- all valid

ii « LONG[O]; ii « (ii-HONG[i])/c2; -- also valid (and cxplicit)

i «ii; ii «LONG[c4]; ‘ -- invalid

Mesa 4.0 Compiler Update 4

Reals

A standard representation for floating-point values has not yct been chosen, Mesa 4.0
nevertheless provides some help with floating- point computation. It allows declaration and
assignment of REAL valucs; furthcermore, REAL cxpressions constructed using the standard
infix operators (cxcept MOD) are converted to sequences of procedurc calls by the compiler,

A REAL value is assumed to occupy two words (32 bits) of storage. Beyond this, no
assumptions arec made about thc representation of REALs. Users of rcal arithmetic must
provide and install an appropriate sct of procedurcs for performing the arithmetic
opcrations (sec the Mesa 4.0 System Documentation also). The procedures must be
assignable to variables declared as follows:

FADD, FSUB, FMUL, IFDIV: PROCEDURE [REAL, REAL] RETURNS [REAL];

FCOMP: PROCEDURE [REAL, REAL] RETURNS [INTEGER];
-~ returns a value that is: 0 if equal, negative if the first is less, positive otherwise

FLOAT: PROCEDURE [LONG INTEGER] RETURNS [REAL];
This scheme has the following consequences:
All other arithmetic operations (ABS, MIN, etc.) are fabricated from these primitives.

The source language provides no denotation for rcal constants, since the compiler
does not know the internal format cxpected by the user-supplicd procedures. As
discusscd below, values of type INTEGER or LONG INTEGER arc automatically converted
to type REAL at run-time; thus integer constants can appear in rcal expressions -but
will be reconverted cach time the expression is evaluated.

Of course, implementers of floating- point packages are frec to provide their own procedures
for constructing REAL values from, e.g., octal constants, but a REAL "constant" currently
cannot be a compile-time constant and cannot appear in a DEFINITIONS mcdule (unless it is
defined using a LOOPHOLE).

Examples

Two: REAL =2; -- means Two: REAL = FFLOAT(2];

Half: REAL =1/Two; -- means Half: REAL = FLOAT[1]/Two;

Bug: ReAL =1/2; -- means Bug: REAL = FLOAT[0]; (integer division)

Implicit Conversions

Conversions from INTEGER Oor CARDINAL t0 LONG INTEGER and from LONG INTEGER tO REAL are
called widening. Widening is automatic in the following situations:

An cxpression will be widened from its inherent type to match its target type (sce
Scction 3.5, pages 37-39). This occurs in assignments and assignment- like contexts
(such as rccord construction or cxtraction).

The types of the operands of an arithmetic operator will be balanced by widening
until all match the type of the widest operand (but not further, cven if the target
type is wider). :

In Mcsa 4.0, automatic widening is not completely implemented in the following situations:

Opcrands of MIN and MAX will be- widened to match the target type if onc is well
defined and otherwise to match the type of the first operand, but there is no general
balancing.

Mesa 4.0 Compiler Update 5

The endpoints in the right operand of IN will be widened to match the type of the
Icft operand, but there is no gencral balancing.

Expressions appearing in the arms of conditionals will be widened as required by the
target type, but there is no general balancing when the target type is ill-dcfined.

The expressions sclecting the arms of a SelectExpr or SelectStmt will be widencd to
match the type of the sclector, but the sclector itself is never widened.
The following cxamples illustrate widening,
i, j: INTEGER; [i: LONG INTEGER; X: REAL;
i e & x ¢ @ x iy x € F i< j THEN i ELSE ii

i+ii, ii +1 -- added as LONG INTEGERS (for any target type)
i+x, x+1, ii +x -- added as ReALs
x> i*j +ii -- multiplied as INTEGERs, added as LONG INTEGERS, compared as REALS

The following are currently considered errors.

i N[i. x) ,
(F i < j THEN | ELSE i) < x -- ill-defined target for IExpr
SELECT [FROM Xx = ..; > ii = .., ENDCASE

In cases in which automatic widening is not implemented or docs not give the desired result,
the operator LONG or user-supplicd procedure FLOAT can be used. -

m, n: CARDINAL; {i; LONG INTEGER;

iiem+n -- added as cARDINALS (overflow lost)
ii « LONG[m +n] -- ditto
ii « LONG[m] +LONG[] -- added as LONG INTEGERs (overflow captured)

A fine point: There are system-provided procedures for performing certain
multiplication and division operations in which the operands and results do not all
have the same precision. These procedures provide less cxpensive cquivalents of, e.g.,
LONG[m] *LONG[n]. See the Mesa 4.0 System Documentation.

Long Pointers and Array Descriptors

Mesa 4.0 implements both long pointers and array descriptors with long pointers as base
components. These pointers provide access to the entire virtual memory of the Dstar. For
compatibility, long pointers are also supported on the Alto, but they do not provide any
additional addressing capability.

Syntax
TypeConstructor == .. | LongTC
LongTC := LONG TypeSpecification
ArrayDescriptorTC = DESCRIPTOR FOR TypeSpecification |

DESCRIPTOR FOR PackingOption ARRAY OF TypeSpecification

Mesa 4.0 Compiler Update 6

The type constructor LONG can be applied to INTEGER (discussed in the preceding scction),
any pointer type, or any array descriptor type. An attempt to lengthen any other type is an
error,

The type constructor DESCRIPTOR FOR can be applied to any array type, including one
designated by a type identifier. (This corrccts an oversight in previous versions of Mesa).
In addition, spccification of an IndexType for the described array type can be omitted if its
constructor follows immediately. In this case, a subrange of CARDINAL with zero origin and
indcfinite upper bound is assumed for the index type.

Long Pointers

A long pointer value occupies two words (32 bits) of storage. Long pointers are typically
crcated by lengthening (short) pointers as described below. In particular, NIL is automatically
lengthened to provide a null long pointer when required by context. The standard
opcrations on pointers (dereferencing, assignment, testing cquality, comparison if ORDERED,
ctc.) all extend to long pointers

On the Dstar, N is lengthened by prefixing a word of zeros and thus has an MDS-
independent representation. All other pointers are lengthened by adding the MDS
base. Every pointer generated in this way is represented by an 8 bit ficld of zeros
followed by a 24 bit virtual address. Long pointers with certain other formats can
be created using LOOPHOLE and will be correctly dereferenced by the hardware,
There is no normalization prior to operations on pointers, however, and such
pointers will give anomolous results in, e.g., comparisons.

On the Alto, pointers are lengthened by prefixing a word of zeros. In all
dercferencing operations, that prefix is discarded (without a check for zero) and the
remaining word is interpreted as the actual address.

Both automatic widening and cxplicit widening (using the operator LONG) are provided for
pointer types as well as for numeric types. Widening an cxpression of type PONTER TO T
produces a valuc of type LONG POINTER TO 7, i.c., only the length attribute is changed by the
widening. The rules and restrictions governing widening in Mesa 4.0 that are discussed in
the preceding section apply equally to pointers.

The operator @ applicd to a variable of type 7 produces a pointer of type LONG POINTER TO
T if the access path to that variable itseif involves a long pointer (other than the implicitly
accessed MDS pointer) and of type POINTER TO T otherwise.

Limited pointer arithmctic continues to be supported in Mesa 4.0, but programmers are
encouraged to usc BASE and RELATIVE pointers (described in the next scection) if the purpose
of the arithmetic is simple relocation. If cither operand in a pointer addition or subtraction
is long, all opcrands arc widened and the result is long.

Examples

R: TYPE =ReEcorD [f: T, ..];
P, q: POINTER TO R;

PP, gq: LONG POINTER TO R;
pT: PONTER TO T,

ppT: LONG POINTER TO T

The following arc valid.

Mesa 4.0 Compiler Update 7

pp ¢ qq; pp ¢« NL; pp ¢ p

pp =qq, pp =NIL, pp =q -- long comparisons
pT « @pf; ppT « @ppf

ppT « @p.f -- pointer lengthened
pp+Hi, ppH, p+i, pp-qq, pp-q -- long results

The following arc not valid.
pp =ppT . -- type clash
p +pp; pT « @pp.f -- no automatic shortcning

Long Array Descriptors

In a long array descriptor, the BASE component is a long pointer and the descriptor occupies
three words (48 bits) of storage. All the standard operations on array descriptors (indexing,
assignment, testing equality, LENGTH, etc.) extend to long array descriptors. The type of
BASE[desc] is long if the type of desc is long.

Array descriptors are widened, cither automatically or explicitly, according to the usual rules
and restrictions. ILong array descriptors are created by applying DESCRIPTOR[] to an array
that is only accessible through a long pointcr (other than the MDS pointer), by applying
DESCRIPTOR[,,] to operands the first of which is long, or by widening a (short) array
descriptor.

Examples

d: DESCRIPTOR FOR ARRAY OF T;

dd: LONG DESCRIPTOR FOR ARRAY OF T
i, n: CARDINAL;

pp: LONG POINTER TO ARRAY [0.0) ofF T;
x: T

dd « DESCRIPTOR[pp, 10, T]; dd « d
x « dd[i]
pp « BASE[dd]; n « LENGTH[dd]

Base and Relative Pointers

Mcsa 4.0 dcals more satisfactorily with base-rclative pointers, i.c., pointers that must be
relocated by adding some basc valuc before they arc dercferenced. Such pointers are uscful
for reducing the number of bits stored when objects can be identificd by small offsets, and
for dcaling with collections of interlinked data items that arc subject to rclocation as entire
aggregates.

Syntax

PointerTC = Ordered BaseOption POINTER Optionalinterval PointerTail
BaseOption = empty | BASE.
TypeConstructor := .. | RelativeTC

Mesa 4.0 Compiler Update 8

RelativeTC = Typeldentifier RELATIVE TypeSpecification

In a PointerTC, a noncmpty Optionalinterval declarcs a subrange of a pointer type, the valucs
of which arc restricted to the indicated interval (and can potentially be stored in smaller
ficlds). Normally, such a subrange type should be used only in constructing a relative
pointer type as described below, since its values cannot span an MDS.

The BaseOption BASE indicates that pointer values of that type can be used to rclocate
relative pointers. Such values behave as ordinary pointers in all other respects with one
cxception: subscript brackets never force implicit dereferencing (see below). The attribute
BASE is ignored in dctermining the assignability of pointer types.

A RelativeTC constructs a relative pointer or relative array descriptor type. The
Typeldentifier must cvaluate to some (possibly long) pointer type which is the type of the
base, and the TypeSpecification must cvaluate to a (possibly long) pointer or array descriptor

type.
Note that the form
' LONG Typeldentifier RELATIVE TypeSpecification

is always in error, since LONG cannot be applicd to a relative type. The type
designated by the TypeSpecification can be lengthened (to give a relative long
pointer) using the form

Typeldentifier RELATIVE LONG TypeSpecification .
Relative Pointers

In the following discussion, assume the decclarations

BaseType: TYPE = BASE POINTER TO ...,

FullType: TYPE = POINTER TO ..;

RelativeType: TYPE = BaseType RELATIVE FullType;
base: BaseType;

offset: RelativeType;

p: IullType.

If FullType is some pointer, long pointer, or pointer subrange type, RelativeType is declared
to be a relative pointer type. Values with type RelativeType are pointers that must be
relocated, by adding some value of type BaseType, before they can be dereferenced. Also,
relative pointers are never widened automatically., With respect to other operations
(assignment, testing cquality, comparison if FFullType is ORDERED, etc.), rclative pointers
behave like pointers of type FullType. In particular, the amount of storage required to store
such a pointer is determined by FullType. Note, however, that RelativeType and FFullType
arc distinct types, incompatible with respect to, c.g, assignment and comparison.

Relocation of a rclative pointer is specificd by using subscript-like notation in which the
type of the "array” is BaseType and that of thc "index" is RelativeType, i.c., the absolute
pointer is denoted by an cxpression with the form

base[offsel]

This expression has the type FullType and the valuc LOOPHOLE|[base] +offset. Note that
base[offset] is not a variable; typical variable dcsignators arc basc[offsef]t or
base[offsef] field. (In addition, the usual rules for implicit dereferencing apply in, c.g., an
Openitem). Rclocation prior to derclerencing is mandatory; offsett, offsetficld, ctc. are
CITOrS,

Mesa 4.0 Compiler Update 9

Some finc points: .

The type of base[offser] is more precisely defined as follows: if FullType is a
subrange pointer type, the subrange is discarded to obtain some type T; otherwise, T
is FullType. If FullType is not a long pointer type but BaseType is, then the final
type is LONG T; otherwise, it is 7. In other words, the resulting type is long if either
the base type or thc relative type is.

The declaration of a relative pointer docs not associate a particular basc value with
that pointer, only a basing type. Thus somc carc is necessary if multiple basc values
are in usc. Notc that the final type of the relocated pointer is largely independent of
the type of the basc pointer; the relative pointer determines the type.- Sometimes this
observation can be used to help distinguish different classes of base values without
producing rclocated pointers with incompatible types.

The base type must have the attribute 8ASE. Conversely, the attribute BASE always
takes precedence in the interpretation of brackets following a pointer expression.
Consider the following dcclarations:

p: POINTER TO ARRAY [IndexType OF ..;
q: BASE POINTER TO ARRAY [ndexType OF

The ecxpression p[e] will cause implicit dereferencing of p and is cquivalent to
prle]l. On the other hand, ¢fe] is taken to specify relocation of a pointer, even if
the type of e is IndexType and not an appropriate relative pointer type. In such
cases, the array must (and always can) be accessed by adding sufficient qualification,
e.g., gt[e]; nevertheless, users should exercise caution in using pointers to arrays as
base pointers.

Mesa 4.0 supplies no mechanisms for constructing: relative pointers. It is expected that such
values will be created by user-supplied allocators that pass their results through a LOOPHOLE
or from pointer arithmetic involving LOOPHOLES. :

Examples

pt « basel offsel]r

p « base[of fsel] - valid pointer assignment (but often unwise)
The following are invalid.

p ¢« offset; pt « offsetrt

Pl offsel] -- p has incorrect type

Relative Array Descriptors

Relative array descriptor types are entircly analogous to relative pointer types; indeed, values
of such types can bc viewed as array descriptors in which the base components are relative
pointers. Note the following:

In the constructor of a rclative array descriptor type, the TypeSpecification must
cvaluate to a (possibly long) array descriptor type.

In the notation introduced above, a rcference to an clement of the described array
“has the form

basel of fsell[]

Mesa 4.0 Compiler Update ‘ 10

where i is the index of the eclement.

Relative array descriptors are constructed using the DESCRIPTOR operator. If p is B RELATIVE
pointer, the form DESCRIPTOR[p, n, 7] produces a valuc with type B RELATIVE DESCRIPTOR FOR
ARRAY OF T. Also, the opcrators BASE and LENGTH can be applicd to a B RELATIVE array
descriptor; the former produces a B RELATIVE pointer.

Block Structure

The previous concepts of procedure body and compound statement have been merged, A
block can appear anywhere a statecment is acceptable and can introduce new identifiers with
scope smaller than an entire procedure (or module) body. In addition, catch phrases and
cxit labels can now appear at the outermost level of a procedure body.

The syntax for dcclaring procedures with bodies expressed in machine code has also been
revised (in anticipation of more general inlinc procedurcs). The corresponding semantics
are machine dependent and are not specified here.

Syntax
ModuleBody := Block
ProcedureBody ::= Block
Statement = .. | Block | .. -- replaces CompoundStmt
Block := BEGIN '
OpenClause
EnableClause
DeclarationSeries
StatementSeries
ExitsClause
END
EnableClause := empty |
ENABLE Catchltem ; |
ENABLE BEGIN CatchSeries END ; |
ENABLE BEGIN CatchSeries ; END ;
MachineCode = MACHINE CODE BEGIN InstructionSeries END
InstructionSeries ;= empty | ByteList |

ByteList ; InstructionSeries
ByteList .= Expression | ByteList , Expression

In addition, the phrase classcs Body, CompoundStmt and MachineCodeTC arc dcleted.

During the cxcecution of a Mcsa program, frames arc allocated at the procedure and module
level only. Any storage required by variables declared in an internal Block (onc used as a
Statement) is allocated in the frame of the smallest cnclosing procedure or module. When
such internal blocks arc disjoint, the arcas of the frame used for their variables overlay one
another,

The scopes of identificrs introduced in the various components of a block arc summarized
by the following diagram, where indentation is used to show the scope of cach phrase:

Mesa 4.0 Compiler Update 11

BEGIN
OpenClause
EnableClause
DeclarationSeries
StatementSeries
ExitsClause
END

Note that any ncwly declared identificrs arc visible only in the DeclarationSeries and
StatementSeries of the block. Any exit labels are visible within the EnableClause (as well
as the more deeply indented constructs); on the other hand, any catch phrasc in the
EnableClause is not cnabled within the ExitsClause. 1f the Block is used as a module or
proccdure body, the parameters and results arc visible throughout the Block., Thus it is
possible to open rccords designated by paramecters or to assign return values within an
ExitsClause (but the assigned values cannot involve internally decclared variables).

A CONTINUE statcment appcaring in the EnableClause of a Block causes cxit from that block.
A similarly placed RETRY statcment causcs recxccution of the block. In the latter case, any
initializing values in the DeclarationSeries are recomputed.

Note that an optional scmicolon can now terminate a CatchSeries in an EnableClause.
Nested Block Structure

With the introduction of blocks, procedure bodics can appcar where they were syntactically
prohibited in previous versions of Mesa. Spccial rules apply to the inheritance of scope
when a procedurce body is declared within the DeclarationSeries or (with nesting) within tlle
StatementSeries of a Block. Within the inner procedurc body:

Identifiers made visible by the OpenClause remain visible (unless redeclared),
Catch phrases in the EnableClause are not inhérited and not cnabled.
Identifiers declared in the DeclarationSeries remain visible (unless redcclared).
Jumps to labels in the ExitsClause are prohibited.

Assume the following skelctal declaration:

Outer: PROCEDURE [..] =
BEGIN
ENABLE s = Handler[];

Inner: PROCEDURE [..] = BEGIN .. END; ,

EXITS
Label =
END

If the signal s is raised in an instance of Tnner, Handler is not invoked there. Handler will,
of course, be invoked cventually if s propagates to the enclosing instance of Outer. (This
noninhcritance rule prevents double exccution of handlers in such situations.) In Mecsa 4.0,
the statement GO TO Label is considered an crror within the body of Inner,

Mesa 4.0 Compiler Update 12

Iterative Statements.

For consistency with blocks, the scope rules for iterative statements have been revised
slightly. In addition, a new statement form that terminates onc iteration of the loop body
and initiates the next has been added.

Syntax

Statement = .. | LoopCloseStmt

LoopStmt ::=LoopControl
DO
OpenClause
EnableClause
StatementSeries
LoopExitsClause
ENDLOOP

LoopCloseStmt = LOOP

The scopes of identificrs introduced in the various components of a loop are summarized by
the following diagram (cf. Blocks):

LoopControl
DO
OpenClause
EnableClause
StatementSeries
LoopExitsClause
ENDLOOP

In previous versions of Mecsa, the scope of the OpenClause cxcluded the LoopExitsClause.
As in the casc of blocks, any exit labels are visible within thc EnableClause, and any catch
phrase in the EnableClause is not enabled within the ExitsClause,

The statement LOOP can appcar only within the body of an iterative statement. Execcuting it
terminates the current itcration of the smallest cnclosing LoopStmt, after which the
LoopControl is updated/reevaluated and, if appropriate, the next itcration is started. Thus
the. construct

DO ... LOOP ... ENDLOOP
is an abbreviation for

DO
BEGIN
. GO TO Skip ..
EXITS Skip = NULL;
END

ENDLOOP .

Included Identifier Lists

In Mcsa 4.0, an item in the DIRECTORY clause can cxplicitly list the identificrs cligible for
inclusion from a designated module. Such included identifier lists scrve as compiler-
checked (but programmer-maintained) lists of intermodular connections and dependencics.

Mesa 4.0 Compiler Update 13

Syntax

IncludeList = Includeltem | Includelist , Includeltem-

Includeltem ::= identifier : FROM FileName |
identifier : FROM FileName UsING [IdList]

If the USING clause is absent, the item’s identifier has all the properties and uses described in
Scctions 7.2.1 and 7.2.2. The only cffect of a USING clause is to enumecrate (and potentially
restrict) the sct of identificrs made accessible to the including module. Use of the identifier,
cither within an OPEN clause or for cxplicit qualification, makes visible only those
identifiers in the IdList. :

Some finc points.

Only identifiers declared in the DeclarationSeries that is part of the ModuleBody of
the included module arc mentioned in the IdList; in particular, neither the included
modulc’s own identificr nor identifiers of rccord ficlds, cnumeration constants, etc.
appear in this list,

Each identifier appearing in the IdList must be defined in the module designated by
the Includeltem,

A warning is generated for cach identifier appearing in the IdList but not used
cxplicitly in the including module. Idcntifiers used only implicitly (to describe
attributes of explicitly included identifiers) should not be listed.

The IdList restricts the set of identifiers available for- mclusnon from a module., It
docs not restrict export into an included interface. The identifier of an exported
item should not ‘appecar in the list unless the intention is to reference a different
item with the same name through an imported instance of the interface.

The following cxample assumes the declaration of SimpleDefs appearing on page 92.

DIRECTORY
SimpleDefs: FrROM "simpledefs" USING [Range, PairPtr];
Example: PROGRAM =
BEGIN
First: PROCEDURE [p: SimpleDefs.PairPtr] RETURNS [SimpleDefs.Range] =
BEGIN
RETURN [IF p = NI THEN 0 ELSE p.firs(]
END;
END.

Note that Pair docs not appear in the included identificr list (because it is only
rcferenced implicitly, through the definition of PairPtr), nor docs first (because it is
declared in a record, not in the body of SimpleDefs itsclf). Any reference to
SimpleDefs.limit would be an ecrror in this example.

Processes

Mcsa 4.0 supports a process mechanism in which processes arc crecated by forking to
procedurcs and arc synchronized by cntry to monitors. Most of the information about the
semantics and intended usage of Mcesa processes appears in the Mesa 4.0 Process Update
(henceforth cited as Process). The Mesa 4.0 Change Summary contains a complete example,
and additional cxamples appcar in the Process document. This scction summarizes the
syntax and dcals with a few linguistic dctails.

Mecsa 4.0 Compiler Update 14

Syntax
PredefinedType &= .. | MONITORLOCK | CONDITION
ProgramTC := v |
MONITOR ParameterlList RetumsClause LocksClause
LocksClause := empty |
LOCKS Expression |
Locks Expression USING identifier : TypeSpecification
TypeConstructor = .. | ProcessTC
ProcessTC = PROCESS RetumsClause
Declaration = IdList : Access EntryOption TypeSpecification Initialization ; |
IdList : Access TYPE = Access TypeSpecification ;
EntryOption = empty | ENTRY | INTERNAL
RecordTC ::‘= MonitoredOption MachineDependent RECORD [VarantFieldList]
MonitoredOption = empty | MONITORED
Statement = .. | WaitStmt | NotifyStmt | JoinCall
Expression := .. | ForkCall | JoinCall
WaitStmt = WwWAIT Varable OptCatchPhrase
NotifyStmt = NOTIFY Variable | BROADCAST Variable
ForkCall := FoORK Call
JoinCall := JoIN Call

Forking and Joining

Processes are created and destroyed by FORK and JOIN operations. If procedure P has type
PROCEDURE T RETURNS T, then the expression FORK P[..] produces a process handle h with
type PROCESS RETURNS T”. JOIN recquirces a process handle as its operand. . The form JOIN A
produces an argument record of type 7° (or stands as a statcment if the RetumsClause is
cmpty). As type mappings,

FORK: PROCEDURE T RETURNS 7’ X T - PROCESS RETURNS T"
JOIN: PROCESS RETURNS T° = T

Some fine points:
A catch phrase can be attached to a FORK or JON (by specifying it in the Call),

Unlike an ordinary procedure call, a FORK recturns a valuc with some process type
(not a record type), and that value cannot be discarded by writing an cmpty
cxtractor.

Monitored Modules

A ProgramTC containing MONITOR can bc uscd only in a ModuleHead to spccify the type of a
~ program module. ‘The LocksClause provides additional information about the program body
and is not part of the modulc’s type. 1f a monitor is to be exported, the correct type for the
interface item in the DEFINITIONS module is obtained by replacing MONITOR by PROGRAM and
delcting thc LocksClause.

Mesa 4.0 Compiler Update 15

Synchronization of. processes is based upon variables with the system-dcfined types
MONITORLOCK and CONDITION. A distinguishcd MONTORLOCK with the identifier LOCK is
implicitly declared in the global frame of any MONITOR with an empty LocksClause. If the
MonitoredOption MONITORED appcars in the definition of a rccord type, each record of that
typce similarly contains an implicitly declared and distinguished MONITORLOCK with identifier
LOCK. lLock and condition variables can also be declared cxplicitly, but any MONITORLOCK
so declared is not distinguished, even if its identifier .is LOCK (sce below).

When a variable with typc MONITORLOCK or CONDITION is a component of a (local or global)
frame, it is initialized automatically when the frame is created. In all other cases, a system
procedure must be called to cstablish appropriate initial values (sce Process, Scction A.6).

Entry Procedures

The EntryOption ENTRY can appear only in a declaration within a monitor; when it docs, the
TypeSpecification must cvaluate to a procedure type and the initialization must specify a
procedurc body (Block). Note that ENTRY docs not imply PUBLIC, but PUBLIC ENTRY is a
permissible (and common) combination.

Entry into a monitor through an ENTRY procedurc is protected by a monitor lock. The
“identity of that lock is determined by the declaration of the monitor. If the LocksClause is
empty, cntry is controlled by the distinguished variable LOCK. Otherwise, the LocksClause
must designate a variable with typc MONITORLOCK, a record containing a distinguished lock
ficld, or a pointer that can be dereferenced (perhaps several times) to yield one of the
preceding. There are two cases (sece Process, Scction A.4.2):

If the USING clause is absent, the monitor is a multi-module one. The lock is located
by cvaluating the LOCKS expression in the context of the monitor’s main body; i.e.,
the monitor’s parameters, imports, and global variables are visible, as are any
identificrs made accessible by a global orEN. Evaluation occurs upon entry to, and
again upon cxit from, the ENTRY procedure (and for any internal warms), The
location of the designated lock can thus be affected by assignments within the
procedure to variables in the LOCKS expression. To avoid disaster, it is cssential that
cach rcevaluation yicld a designator of the same MONITORLOCK.

If the USING clause is present, the monitor is an object monitor. The lock is located
as above with one exception: any occurrence of the identificr declared in the USING
clause is bound to that argument of the ENTRY procedurc having the same identifier
and a compatible type. If there is no such paramecter, the ENTRY is in crror. The
same care is neccessary with respect to recvaluation; to cmphasize this, the
distinguished argument is trcated as a rcad-only value within the body of the ENTRY
procedure.

The following cxamples illustrate the sclection of locks.

R: TYPE = MONITORED RECORD [..];
RR: TYPE = RECORD [.., speciallock: MONITORLOCK, ..];

MI: MONTOR =
BEGIN
-- LOCK: monNrmoRLock implicitly declared here
Pl: PUBLIC ENTRY PROCEDURE [..] =
BEGIN -- locks LOCK -- .. END;
END.

Mesa 4.0 Compiler Update 16

M2a: MONITOR [p: POINTER TO POINTER TO R] LOCKS p =

BEGIN
P2: PUBLIC ENTRY PROCEDURE [..] =

BEGIN -- locks ptt.LOCK -- .. END;
END.

M2b: MONITOR [p: POINTER TO POINTER TO RR] LOCKS ptt.specialLock =
-- spccification of the lock is mandatory here

BEGIN
P2: PUBLIC ENTRY PROCEDURE [.] =
BEGIN -- locks ptt.specialLock -- .. END;
END.
M3: MONITOR LOCKS p USING p: POINTER TO R =
BEGIN
P3: PUBLIC ENTRY PROCEDURE [p: POINTER TO R, ..] =
BEGIN -- locks p.LOCK -- .. END;
END.

Signals require special attention within the body of an ENTRY procedure. A signal raised
with the monitor lock held will propagate without releasing the lock and possibly invoke
arbitrary computations. For errors, this can be avoided by using the RETURN WITH ERROR -
construct described in the. next section.

When an instance of an ENTRY procedure is to be destroyed because of a remote exit from a
catch phrase (unwinding), the lock should also be relcased. In Mesa 4.0, it is the
programmer’s responsibility to determine if unwinding is possible and, if so, to provide a
catch phrasc for UNWIND that restores the monitor invariant. Code to actually relcase the
monitor lock is automatically appended to the outcrmost enabled catch phrasc for UNWIND in
an ENTRY procedure. That catch phrase can have a NULL body if no other cleanup actions are
required.

Internal Procedures

The EntryOption INTERNAL can appear only in a declaration within a monitor; when it does,
the TypeSpecification must evaluate to a procedure type and the initialization must specify a
procedure body (Block). Note that INTERNAL docs not imply PRIVATE (if the default is PuBLIC),
but PUBLIC INTERNAL is considered an improper combination of attributes (warning only).

A call of an INTERNAL procedure is permitted only within an ENTRY procedure or another
INTERNAL procedure. Forking to an INTERNAL procedure is never allowed. An INTERNAL
proccdure can safely access monitored data and can perform WAIT, NOTIFY and BROADCAST
opcrations. A WAIT operation implicitly references the monitor lock; thus an INTERNAL
procedure of an object monitor that contains a WAIT must have a paramecter designating the
locked object as described above.

Somc finc points:

In Mecsa 4.0, the attribute INTERNAL is associated with a procedurce’s body, not its type.
Thus INTERNAL cannot be spccificd in a DEFINITIONS module, and checks on
intecrmodular calls of intcrnal procedurcs arc not performed (cxcept for the PUBLIC
INTERNAL warning). Also, the attribute INTERNAL is Jost when a procedure value is
assigned to a variable or passed as an argument of a procedure. Such assignments
should be donc with caution.

Mesa 4.0 Compiler Update 17

Signals raiscd by INTERNAL procedurcs rcquire special consideration. When the
construct RETURN WITH ERROR is cxccuted within an INTERNAL procedure, the monitor
lock is not rclcased prior to signal propagation.

Wait and Notify

Only ENTRY and INTERNAL proccdures within a monitor can contain WAIT, NOTFY and
BROADCAST statcments.

Error Recturns

It is possible to delete a procedure instance before raising an error dctected by that
proccdure. Within an eNTRY procedurc of a monitor, the monitor lock is rcleased before the
error is raised. (Such procedures are expected to be the primary users of this facility.)

Syntax
RetumStmt = .. | RETURN WITH ERROR Call

Consider the following skelctal code:
Failure: ERROR [..] = CODE;

Proc: ENTRY PROCEDURE [..] RETURNS [..] =
BEGIN
ENABLE UNWIND = ..;

IF condl THEN ERROR Failure[..]);
IF cond2 THEN RETURN WITH ERROR Failure[..];

END;

Exccution of the construct ERROR Failure[..] raises a signal that propagates until some
_catch phrase specifies an exit. At that time, unwinding begins; the catch phrase for UNWIND
in Proc is exccuted and then Proc’s frame is destroyed. Within an entry procedure such as
Proc, the lock is held until the unwind (and thus through unpredictable computation
performed by catch phrases).

Execution of the construct RETURN WITH ERROR Failure[..] releases the monitor lock and
destroys the frame of Proc before propagation of the signal begins. Note that the argument
list in this construct is detcrmined by the declaration of Failure (not by Proc’s RETURNS
clause). The catch phrase for UNWIND is not cxccuted in this casc. The signal Failure is
actually raiscd by the system, after which Failure propagates as an ordinary crror (beginning
with Proc’s caller). '

Multiwvord Constants

Record and array constructors in which all components arc themselves constant define so-
called multiword constants. Such constants arc now constructed during compilation and can
be encoded within Mcsa symbol tables. This has the following conscquences:

A dcclaration cquating an identifier to a multiword constant (but not to a string
literal) can appcar in a DEFINITIONS module, and the constant value thereby becomes
available to uscrs of ‘that module.

Mesa 4.0 Compiler Update 18

Constant sclection from such valucs (by ficld sclection or by indexing with a
constant subscript) is also donc¢ during compilation. '

Furthcrmore, if an identificr is cquated to a multiword constant in a program module,
cxactly one copy of that constant appecars in the code, and its components can be read
(using, c.g., a computed index) directly from Lhe code segment, This allows table driven
programming in which the tables arc automatically swapped.

A fine point: A packed array or an array of multiword clements is currently copied
into a data area cach time one of its clements is accessed.

The following declarations define multiword constants and can appear in a DEFINITIONS
module.

Ident: RECORD [version: CARDINAL, id: CHARACTER, released: BOOLEAN] =
[1, *#, FALSE];

Powers: ARRAY [1.4] OF CARDNAL =[2, 4, 8, 16];

Nonsense: CARDINAL = IF [dent.released THEN Ident.version ELSE Powers[2];
The following are not compile-time constants in Mesa 4.0.

"abc", ("abc™)[1].

Miscellaneous Language Changes
Local Strings

The body of a string literal is ordinarily placed in the global frame of the module in which
the litcral appears. Pointers to that body (the actual STRING values) can then be used freely
with little danger that the body will move or be destroyed. Unfortunately, this scheme can
consume substantial amounts of space in the (permanent and unmovable) global frame area.

If a string literal is followed by ’L (ec.g., "abc"L), a copy of the string body is moved from
the code to the local frame of the smallest enclosing procedurc whenever an instance of that
proccdure is created. As a corollary, the space is freed and the string body disappcars when
the procedure returns. Thus it is important to insurc that pointers to local string literals are
not assigned to STRING variables with lifctimes longer than that of the procedure.
Programmers should avoid using local string literals until performance tuning is nccessary
(except perhaps in calls of straightforward output procedures).

Character Arithmetic

The following arithmetic opcrations are now dcfined for values of type CHARACTER:

CHARACTER + INTEGER - CHARACTER
INTEGER + CHARACTER =—> CHARACTER
CHARACTER - INTEGER — CHARACTER
CHARACTER - CHARACTER —* INTEGER,

Other arithmetic opcrations do not allow characters as operands, and valucs of type INTEGER
and CHARACTER cannot bc cross-assigned.

Examples

¢ CHARACTER; :
d: INTEGER + ¢ - '0; -- consider a translation tablc instcad

Mesa 4.0 Compiler Update 19

F ¢ IN ["a.'z] THEN ¢ « ’A + (¢-’a)
Selections

More gencral expressions arc allowed to label arms of sclections when there is no initial
rclational operator.

Test ::= Expression | RelationTail -- formerly Sum | RelationTail
Example

SELECT TRUE FROM

i>0, j>0=> sI; -- previously required (i > 0), (G > 0)
D AND ¢ > s2; -- previously required (p AND ¢q)

k>0orq = s3;

ENDCASE = sN
This is equivalent to (and perhaps more readable than)

F i> 0oRr j> 0 THEN s/
ELSE IF. p AND ¢ THEN s2
ELSE IF k > 0 OR g THEN s3

ELSE sN .
Discriminations

Previous versions of Mesa have required that all adjectives labeling an arm of a
discrimination name identically structurcd variants; in Mesa 4.0, this restriction is lifted. If,
however, the labels identify more than one variant structure, the record is not considered to
be discriminated within that arm and only the common fields are visible (cf. ENDCASE).

Example

R: TYPE = RECORD [
v: T,
varian{: SELECT lag:* FROM
red, pink = [vRP: T},
green = [vG: T],
yellow = [vY: T],

ENDCASE] ;
r: R;
WITH x: r SELECT FROM
red, pink = ..; -- x.v and x.vRP accessible
green, yellow = ..., -- only x.v accessible
ENDCASE = ... -- only x.v accessible

Mcsa 4.0 also allows computed or overlaid variant rccords to be compared without
discrimination if all variants have the same length. As usual, caution is adviscd; two rccords
interpreted as different variants can be represented by the same bit pattern when computed
tags arc uscd.

Mesa 4.0 Compiler Update 20

Compilation Options

The following compiler options have been added; they are controlled by switches in the
usual way:

Switch Option Controlled

alto Generating code for an Alto or Dstar

run Terminating compilation by running another program
sort Sorting global variables and entry indices

The Alto/Dstar switch primarily affects the treatment of long pointers in the objcct code.

The run switch specifies running another program without returning to the cxccutive. This
switch is primarily intended for use in command files. The file name preceding the switch
specifies the program to be run. The file is assumed to contain a program rcquiring
standard (Bcpl) microcode if the filc name’s extension is ".RUN" and rcquiring Mesa
- microcode otherwise. The default extension is ".IMAGE". -Prior to exccution of the
specified program, a new command file (COM.CM) is constructed containing the full file
name plus any switches following the °r. In the case of command-line input, the remainder
of the command line is also appended.

The sorting switch has been added in anticipation of tools that will expedite updating a
module in a configuration or subsystcm when the new and old versions of the object code
are sufficiently similar. When sorting is suppressed, the assignment of global frame offsets
and cntry indices depends only upon order of declaration in the source text; on the other
hand, the gencrated code is likely to be somewhat less compact.

Sorting of local variables is not suppressed. Unless a module uses global variables
extensively, the object code expansion is unlikely to excced ?%.

The dcfaults arc to generate code for an Alto, to terminate by returning to the executive, and
to sort global variables and entry points.

Internal Changes

The following internal changes are mcentioned for completeness; see the Mesa 4.0 System
Update for morc information,

Main Body Procedure

The main body of a module is now cxecuted in a scparate local frame. Note however, that
any storage required by blocks or local strings in the main body is still allocated in the
global frame, '

External Links

External links (for imported procedures, signals or frames) arc now stored and indexed

backwards from the global framc basc or code basc (as sclected by a binding/loading
option).

Mesa 4.0 Compiler Update 21

Alto/ Mesa Microcode

Both the instruction sct and the opcode numbers have changed substantially.

Frame Allocation

Instructions for allocating and frecing frames are now implemented in microcode; this

greatly inccases the spced of any transfer involving a large argument record.

Distribution:
Mesa Users
Mesa Group

Mesa 4.0 Compiler Update 22
Appendix: Signed and Unsigned Arithmetic

Background and -Overview

In any implementation of Mesa, the number of bits available for representing a value of a
given type is fixed. Each numecric type of the language thus is restricted to some subrange
of Z, the sct of integers as understood in mathematics. The following types, corresponding
to the indicated subranges, arc built into the language:

INTEGER [-2N-1 2N-1 -- "signed integers”
CARDINAL [0.2N) -- "unsigned integers"
LONG INTEGER [-22N-1 22N-1) -- "double-precision integers"

Here N is the word length of the machine (N=16 for the Alto and Dstar). The programmer
can also declare types that are themselves subranges of CARDINAL or INTEGER (but not LONG
INTEGER), c¢.g, T: TYPE = [0.10).

Let v, x, and y be variables with numeric subrange types. In principle, execution of the
assignment v « x © y proceeds as follows:

The values of x and y are taken as clements of Z.

Thosec values are combined using some function f that defines the operator © over Z
and produces a result f(x,), also in Z. :

If the result is in the subrange of Z spanned by the type of v, f(x,y) is assigned to v;
otherwise a range failure occurs.

Unfortunately, the underlying hardware does not provide the function f but only a partial
function f” over somc subrange of Z with the property that f” agrees with f wherever both
arc defined; f” is said to overflow (or underflow) clscwhere. In fact, the hardware generally
provides a family of partial functions rclated to f, one cach for INTEGER, CARDINAL, and LONG
INTEGER. The operator © thus is generic at the hardware Ievel, and the compiler must choose
the appropriate partial function for preserving the abstraction being used by the
programmer (or for detecting its breakdown). The choice is made by considering an
attribute of cach operand called its representation.

If the typc of any opcrand is LONG INTEGER, the rule is simple: all other operands are
converted to LONG INTEGER and the result is computed in that domain. For INTEGERs (with
signed representation), CARDINALS (with unsigned representation) and subrange types such as
T (with both representations), the issucs are morc subtle. Some opcrators, such as the
rclationals, arc clearly generic and were recognized as such in previous versions of Mesa.
Many other operators produce the correct result modulo 2N (i.c., the "right” bit pattern) no
matter what representation is assumed; the representation affects only the definition of
overflow.

Examples (N=6)

The bit patterns representing -1 and 177777B are identical, but (1777778 > 1) is
TRUE while (-1 > 1) is FALSE . Also, (-1 +1) =0 and thcre is no overflow, but
(177777B + 1) cannot bc represented as an unsigned number.

In a critique of Mecsa [Wirth], Niklaus Wirth has argued strongly that the language should
be defined so that the overflow condition can always be specificd. Note that this is a
nccessary condition for implementing reliable range checking (also advocated by Wirth) but

Mesa 4.0 Compiler Update 23

not a sufficicnt one. Mesa 4.0 does not provide options for overflow detection or range
checking but does revise the language definition so that future versions can offer such
options,

While we have found no rules for mixing signcd and unsigned values that are entirely
satisfactory, we believe that those presented in the following scction are rcasonably
unobtrusive, compatible with cxisting code and reclatively free of surprises.

Signed and Unsigned Numbers

This section discusscs the rules now used by Mesa for choosing between signed and unsigned
versions of operations on single-precision numbers. The new rules assume that therc are
conversion functions performing the following mappings:

CARDINAL — INTEGER
INTEGER —> CARDINAL

In both cases, the "conversion" amounts to an assertion that the argument is an element of
INTEGER) CARDINAL. The programmer can also make such a range assertion explicit as
described in the main body of this memo. In Mesa 4.0, such assertions must be verified by
the programmer. There is not an option to genecrate code that checks these assertions,
whether implicit or explicit, or code that detects overflow in arithmetic opcrations.

For cach of the operators 4 -, * /, MOD, MIN, and MAX, there are two single-precision
opcrations, mapping as follows: :

INTEGER" ~> INTEGER (signed arithmetic)
CARDINAL" — CARDINAL. (unsigned arithmetic).
Sirhilarly, therc arc two operations for each of the operators 5 #, <, {5 >, >=and IN:
INTEGER" — BOOLEAN (signed comparisons)
CARDINAL" —> BOOLEAN (unsigned comparisons).

There are no operations upon mixed representations in any case; thus all operands must be
forced to have some common representation. The arithmetic operators also propagate that
same represcntation to the result,

A possible surprise is that CARDINAL is taken to be closed under subtraction; i.e., m-n
is considered to overflow if m and n arc CARDINALs and m < n.

For any arithmetic cxpression, the inherent representations of the operands and the farget
representation of the result arc used to choosc between the signed and unsigned operations
(cf. the discussion of inherent and target types, Scction 3.1, pages 37-39).

The target type determines the target represcentation. The target type is derived from
the type of the variable to which an cxpression is to be assigned, from a range
assertion applicd to a subexpression, ctc. 1If all valid valucs of the target type are
nonncgative, the target representation is wunsigned; otherwise, it is signed. The
arithmetic opcrators listed above propagate target representations unchanged to their
opcrands, but the target rcpresentation of an operand of a rclational operator is
undcfined. Thus cach (sub)expression has at most onc target represcntation.

The inherent representation of a primary is determined by its type (if a variable,
function call, ctc.), by its value (if a compile-time constant), or explicitly (if a range
assertion). Possible inherent representations are signed and unsigned; in addition,

Mesa 4.0 Compiler Update 24

compile-time constants in [0 .. 2N- 1) and primarics with types that are subranges of
INTEGER M CARDINAL arc considered to have both inhcrent representations. Inherent
representations of opcrands arc propagated to results as described below.

The basic idea is that generic operations are disambiguated first by the inherent
representations of their operands, next by the target representation, and finally by a dcfault
convention, If the operation cannot be disambiguated in any of these ways, the expression is
considered to be in crror. The exact rules follow:

If the operands have exactly onec common inherent representation, the opcration
defined for that representation is selected (and the target representation is ignored).

If the operands have no common inherent representation but the target
representation is well-defined, the operation yielding that representation is chosen,
and cach operand is "converted" to that representation (in the weak sense discussed
above).

If the operands have both inhercent representations in common, then
if the target rcprescatation is well-defined it selects the operation;
otherwise the signed operation is chosen.

If the operands have no representation in common and the target rcpresentation is
ill- defined, the expression is in error.

In all cases, the inhcrent representation of the result is determined by the mapping
petformed by the selected operation. '

The unary operators require special treatment. Unary minus converts its argument to a
signed representation if necessary and produces a signed result. ABS is a null operation (with
warning message) on an opcrand with an unsigned representation, and it yiclds an unsigned
representation in any case. The target representation for the operand of LONG (or of an
implied widening opecration) is unsigned.

Examples

Assume the following declarations:

i, J© INTEGER; m, n: CARDINAL; s, ¢ [0.77777B]; b: BOOLEAN

The statements on ecach of the following lines are cquivalent.

i« m+n; i« INTEGER[m] -- unsigned addition

i« j+m [«ndf; i «j-HNTEGER[n] -- signed addition

i « s-H; i« INTEGER][s] -HNTEGER] /] . -- signed (overflow possible)

n « sH; n « CARDINAL[5] HCARDINAL]] -- unsigned (overflow impossible)
§ © 5-1; § « CARDINAL[5] - CARDINAL] ¢] -- unsigned (overflow possible)
bes-t>0;0b *—uNTEdER[s]-lNTEGER[] >0 -- signed (overflow impossible)

i € -m; i « -INTEGER[m]
i« mtr*(j+n); @ « INTEGER[m] + (INTEGER[n]*(j HNTEGER[1]))
noe ma*(), n € m + ("(CARDINALL j] +1))

Mesa 4.0 Compiler Update 25

i« mn*(s+n); | ¢ INTEGER[m-+n*(CARDINAL] s] +1))]
b « s N[+l .. (H]; b « INTEGER[s] IN [INTEGER[£-1] .. INTEGER[(H]]
FOR s IN [¢-1 .. t+] ..; FOR s IN [CARDNAL[(-1] .. CARDINAL[(-]]

The following statements are incorrcct because of representational ambiguities.

b «i>mn b e itnNJ[s . j]
SELECT { FROM m = .., { = .., ENDCASE

Both the following are legal and assign the same bit pattern to i, but the first overflows if
m< n.

i ¢« mn, i« F m>=n THEN m-n ELSE -~(n-m) .
Reference

Wirth, N. On the peaceful coexistence of integers and cardinals, Xerox PARC, 29 June
1977. :

XEROX

Inter- Office Memorandum

To Mcsa Users Date May 31, 1978
From Dave Redell, Dick Sweet Location Palo Alto
Subject Mesa 4.0 Process Update Organization SDD/SD

Filed on: [IRIS] <MESA>DOC> PROCESS40.BRAVO

Mesa provides language support for concurrent exccution of multiple processes. This allows
programs that arc inherently parallel in naturc to be clearly cxpressed. The language also
provides facilitics for synchronizing such processes by means of entry to monitors and
waiting on condition variables.

The next scction discusses the forking and joining of concurrent process. Later sections deal
with monitors, how their locks are spccified, and how they are entered and exited. Condition
variables arc discussed, along with their associated opecrations.

10.1. Concurent exccution, FORK and JONN.

The FORK and JOIN statements allow parallel exccution of two procedures. Their use also
requires the new data typc PROCESS. Since thc Mesa process facilities provide considerable
flexibility, it is ecasicst to understand them by first looking at a simple cxample,

10.1.1. A Process Example

Consider an application with a front-end routine providing interactive composition and
editing of input lines:

Read Line: PROCEDURE [s: STRING] RETURNS [CARDINAL] =

BEGIN

¢: CHARACTER;

s.length « 0;

DO
¢ « ReadCharl[];
IF ControlCharacter[¢] THEN DoAction| c]
ELSE AppendChar| s,c];
IF ¢ =CR THEN RETURN [s./ength] ;
ENDLOOP; :

END;

The call
n « Read Line[buffer];
will collect a linc of user type-in up to a CR and put it in some string named buffer. Of

Mesa 4.0 Process Update 2

course, the caller cannot get anything clse accomplished during the type-in of the line. If
there is anything clsc that nceds doing, it can be done concurrently with the type-in by
Sforking to ReadlLine instcad of calling it:

p ¢ FORK Read Line[buffer];
<{concurrent computation>
n « JON p;

This allows the statements labeled <concurrent computation> to proceed in parallel with
user typing (clearly, the concurrent computation should not refercnce the string buffer).
The FORK construct spawns a new process whose result type matches that of ReadLine.
(Read Line is referred to as the "root procedure” of the new process.)

p. PROCESS RETURNS [CARDINAL] ;
Later, the results are retricved by the JOIN statement, which also deletes the spawned process.
Obviously, this must not occur until both processes are ready (i.e. have rcached the JOIN and

the RETURN, respectively); this rendevous is synchronized automatically by the process
facility.

Note that the types of the arguments and results of Read Line arc always checked at compxle
time, whether it is called or forked.

The one major difference between calling a procedure and forking to it is in the handling of
signals; see scction 10.5.1 for dctails.

10.1.2. Process Language Constructs

The declaration of a PROCESS is similar to the declaration of a PROCEDURE, except that only
the return record is specified. The syntax is formally spccified as follows:

TypeConstructor = | ProcessTC

ProcessTC = PROCESS RetumsClause

RetumsClause = empty | RETURNS ResultList -- from scc. 5.1.
ResultList = FieldList -- from scc. 5.1.

Supposec that f is a procedure and p a process. In order to fork f and assign the resulting
process to p, the RetumClause of f and that of p must be compatible, as described in sec 5.2.

The syntax for the FORK and JOIN statecments is straightforward:

‘Statement i= .. | JoinCall

Expression = | ForkCall | JoinCall
ForkCall = FORK Call

JoinCall = JOIN Call

Call = (scc scctions 5.4 and 8.2.1)

The ForkCall always returns a value (of type PROCESS) and thus a FORK cannot stand alone as
a statement. Unlike a procedurc call, which returns a RECORD, the value of the FORK cannot
be discarded by writing an cmpty extractor. The action specificd by the FORK is to spawn a

Mesa 4.0 Process Update 3

process parallel to the current one, and to begin it cxccuting the named procedure.

The JoinCall appears as cither a statement or an cxpression, depending upon whether or not
the process being joined has an empty RetumsClause. It has the following mecaning: When
the forked procedure has exccuted a RETURN and the JOIN is exccuted (in either order),

the returning process is deleted, and

the joining process receives the results, and continues execution.

A catchphrasc can be attached to cither a FORK or JOIN by spccifying it in the Call. Note,
nowever, that such a catchphrase docs not catch signals incurred during the exccution of the
procedure; sce scction 10.5.1 for Ffurther details.

There are several other important similaritics with normal procedure calls which are worth
noting:

The types of all arguments and recsults are checked at compile time,

There is no intrinsic rule against multiple activations (calls and/or forks) of the
same procedure cocxisting at once. Of course, it is always possible to write
proccdures which will work incorrectly if used in this way, but the mechanism itself
does not prohibit such use.

Onc cxpected pattern of usage of the above mechanism is to placc a matching FORK/JOIN pair
at the beginning and end of a single textual unit (i.e. proccdure, compound statement, etc.) so
that the computation within the textual unit occurs in parallel with that of the spawned
process. This style is encouraged, but is nof mandatory; in fact, the matching FORK and JOIN
nced not even be done by the same process. Care must be taken, of course, to insure that
cach spawned process is-joined only once, since the result of joining an alrcady deleted
process is undefined. Note that the spawned process always begins and ends its life in the
same textual unit (i.e. the target procedure of the FORK).

Whilc many processes will tend to follow the FORK/JOIN paradigm, there will be others whose
role is better cast as continuing provision of services, rather than one-time calculation of
results. Such a "dctached” process is never joined. If its lifctime is bounded at all, its
deletion is a private matter, since it involves ncither synchronization nor delivery of results.
No language features are required for this operation; see the runtime documentation for the
description of the system procedure provided for detaching a process.

10.2. Monitors

Gencerally, when two or morce processes are cooperating, they nced to interact in more
complicated ways than simply forking and joining. Somec¢ more general mechanism is needed
to allow orderly, synchronized intcraction among processes. The interprocess synchronization
mcchanism provided in Mcsa is a variant of monitors adapted from the work of Hoare,
Brinch Hanscn, and Dijkstra. The underlying view is that interaction among processes always
reduccs to carcfully synchronized access to shared data, and that a proper vchicle for this
intcraction is one which unifics:

- the synchronization
- the shared data

- the body of code which performs the accesses

Mesa 4.0 Process Update 4

The Mesa monitor facility allows considerable flexibility in its use. Before getting into the
details, let us first look at a slightly over-simplificd description of the mechanism and a
simple cxample. The remainder of this scction deals with the basics of monitors (more
complex uses are described in scction 10.4); war and NOTIFY arc described in scction 10.3.

10.2.1. An overview of Moanitors

A monitor is a module instance. It thus has its own data in its global frame, and its own
procedures for accessing that data. Some of the procedures arc public, allowing calls into the
monitor from outside. Obviously, conflicts could arisc if two proccsses were executing in the
same monitor at the same time. To prevent this, a monitor lock is used for mutual exclusion
(i.c. to insurc that only onc process may be in cach monitor at any one time). A call into a
monitor (to an entry procedure) implicitly acquires its lock (waiting if nccessary), and
returning from the monitor releases it. The monitor lock serves to guarantee the integrity of
the global data, which is cxpressed as the monitor invariant -- i.c an asscrtion defining what
constitutes a "good state" of the data for that particular monitor. It is the responsibility of
every entry procedure to restore the monitor.invariant before returning, for the benefit of
the next process entering thc monitor,

Things are complicated slightly by the possibility that one process may enter the monitor and
find that the monitor data, while in a good state, ncvertheless indicates that that process
cannot continuc until some other process enters the monitor and improves the situation. The
WAIT opcration allows the first process to release the monitor lock and await the desired
condition. The waT is performed on a condition variable, which is associated by agreement
with the actual condition nccded. When another process makes that condition true, it will
perform a NOTIFY on the condition variable, and the waiting process will continue from
where it left off (after reacquiring the lock, of course.)

For cxample, consider a fixed block storage allocator providing two entry procedures:
Allocate and Free. A caller of Allocate may find the free storage ecxhausted and be obliged
to wait until some calier of [Free rcturns a block of storage.

Storage Allocator: MONITOR =
BEGIN
StorageAvailable: CONDITION;
FreeList: POINTER;

Allocate: ENTRY PROCEDURE RETURNS [p: POINTER] =
BEGIN
WHILE FreeList =NL DO
WAIT StorageAvailable
ENDLOOP;
p € Freelist; FreeList « p.next; .
END; :

F'ree: ENTRY PROCEDURE [p: POINTER] =
BEGIN
p.next « Freelist; FreeList « p;
NOTIFY StorageAvailable
END;

END.

Mesa 4.0 Process Update 5

Note that it is clcarly undcsirable for two asynchonous processes to be exccuting in the
StorageAllocator at the same time. The use of entry procedures for Allocate and [Free
assurcs mutual exclusion. The monitor lock is relecased while warring in Allocate in order to
allow Free 10 be called (this also allows other processes to call Allocate as well, Icading to
several processes waiting on the queuc for StorageAvailable).

10.2.2. Monitor Locks

The most basic component of a monitor is its monitor lock. A monitor lock is a predefined
type, which can be thought of as a small record:

MONITORLOCK: TYPE =PRIVATE RECORD [/ocked: BOOLEAN, queue: Queue];

The monitor lock is private; its ficlds are never accessed cxplicitly by the Mcesa programmer.
Instecad, it is used implicitly to synchronize entry into the monitor code, thereby authorizing
access to the monitor data (and in some cascs, other resources, such as 170 devices, ctc.) The
next scction describes several kinds of monitors which can be constructed from this basic
mechanism. In all of these, the idea is the same: during entry to a monitor, it is necessary to
acquire the monitor lock by:

1. waiting (in the qucuc) until: Jocked = FALSE,

2. sectting: locked +« TRUE.
10.2.3. Declaring monitor modules, ENTRY and INTERNAL procedures
In addition to a collection of data and an associated lock, a monitor contains a set of
proccdure that do opcrations on the data. Monitor modules are declared much like program
or dcfinitions modules; for example:

M: MONITOR [arguments] =
BEGIN

END.
The procedures in a monitor module are of three kinds:
Entry procedures
Internal procedures
External procedures

Every monitor has onec or more entry procedures; these acquire the monitor lock when called,
and arc dcclared as:

P: ENTRY PROCEDURE [arguments] =. ..
The entry procedurcs will usually comprise the set of public procedures visible to clients of
the monitor module. (There are some situations in which this is not the case; sce external

procedurcs, below). The usual Mesa default rules for pupLic and PRIVATE procedures apply.

Many monitors will also have internal procedurcs: common routines sharcd among the

Mesa 4.0 Process Update 6

several entry procedures. These exccute with the monitor lock held, and may thus freely
access the monitor data (including condition variables) as nccessary. Internal procedures
should be private, since direct calls to them from outside the monitor would bypass the
acquisition of the lock (for monitors implemented as multiple modules, this is not quite
right; sec scction 10.4, below). internal procedures can be called only from an entry
proccdure or another internal procedure. They are declared as follows:

Q: INTERNAL PROCEDURE [arguments] =. ..

The attributes ENTRY Or INTERNAL may be specificd on a procedure only in a monitor module.
Scction 10.2.4 describes how one dcclares an interface for a monitor.

Some monitor modules may wish to have external procedures. These are declared as normal
non-monitor procedures:

R: INTERNAL PROCEDURE [arguments]

Such procedures are logically outside the monitor, but are declared within the same module
for recasons of logical packaging. For example, a public external procedure might do some
preliminary processing and then make repeated calls into the monitor proper (via a private
entry procedure) before returning to its clicnt. Being outside the monitor, an external
procedure must not reference any monitor data (including condition variables), nor call any
internal procedurcs. The compiler checks for calls to internal procedurcs and usage of the
condition variable operations (WAIT, NOTIFY, etc.) within external procedures but does not
check for accesses to monitor data.

A fine point:

Actually, unchanging read-only global variables may be accessed by external procedures; it is changeable
monitor data that is strictly off-limits.

Generally spcaking, a chain of procedure calls involving a monitor module has the general
form: .

Clicnt procedure -- outside module
¥
External procedure(s) -- inside module but outside monitor

Entry procedure -- inside monitor
Internal procedure(s) -- inside monitor

Any deviation from this pattern is likely to be a mistake. A uscful technique to avoid bugs
and increasc the rcadibility of a monitor module is to structure the source text in the
corresponding order:

M: MONITOR =
BEGIN
<External procedures>
<{Entry proccdurcs>
<Internal proccdures>
<Initialization (main-body) coded
END.

Mesa 4.0 Process Update 7

10.2.4. Interfaces to monitors

In Mesa, the attributes ENTRY and INTERNAL are associated with a procedure’s body, not with
its type. Thus they cannot be specified in a DEFINITIONS module. Typically, intcrnal
proccdures arc not exported anyway, although they may be for a multi-module monitor (see
scction 10.4.4). In fact, the compiler will issuc a warning when the combination PUBLIC
INTERNAL oOccurs.

From the client side of an interface, a monitor appcars to be a normal program module,
hence the keywords MONITOR and ENTRY do not appear. For example, a monitor M with entry
procedurcs P and @ might appear as:

MDefs: DEFINITIONS =
BEGIN
M: PROGRAM [arguments];
P, Q. PROCEDURE [arguments] RETURNS [results};

END.

10.2.5. Interactions of processes and monilors

One interaction should be noted between the process spawning and monitor mechanisms as
defined so far. If a process executing within a monitor forked to an internal procedure of
the same monitor, the result would be two processes inside the monitor at the same time,
which is the exact situation that monitors are supposed to avoid. The following rule is
therefore enforced:

A FORK may have as its target any procedure excep! an internal procedure of a
monilor.

A fine point:

In the case of a multi-module monitor (sce scction 10.4.4) calls to other monitor procedures through an
interface cannot be checked for the INTERNAL attribute, since this information is not available in the
interface (sec section 10.2.4).

10.3. Condition Variables

Condition variables arc declared as:
¢: CONDITION;

The content of a condition variable is private to the process mechanism; condition variables
may be accessed only via the operations dcfined below. It is important to note that it is the
condition variable which is the basic construct; a condition (i.c. the contents of a condition
variable) should not itsclf be thought of as a mcaningful object; it may not be assigned to a
condition variable, passed as a paramcter, ctc.

10.3.1. Wait, Notify, and Broadcast

A process exccuting in a monitor may find some condition of the monitor data which forces
it to wait until another process centers the monitor and improves the situation. This can be
accomplished using a condition variable, and the three basic operations: WA, NOTIFY, and

Mesa 4.0 Process Update 8

BROADCAST, dcfined by the following syntax:

Statement = .. | WaitStmt | NotifyStmt
WaitStmt - 11 = WAIT Variable OptCatchPhrase
NotifyStmt = NOTIFY Variable | BROADCAST Variable

A condition variable ¢ is always associated with some Boolean expression describing a desired
state of the monitor data, yiclding the gcneral pattern;

Process waiting for condition:

WHILE ~BooleanExpression DO
WAIT ¢
ENDLOOP;

Process making condition true:

make BooleanExpression true; -- i.c. as side effect of modifying global data
NOTIFY c; _

Consider the storage allocator example from scction 10.2.1. In this case, the desired .
BooleanExpression is "FreeList # NIL". There are several important points regarding WA
and NOTIFY, some of which are illustrated by that example:

WAIT always rcleases the lock while waiting, in order to allow entry by other processes,
including the process which will do the NOTIFY (c.g. Allocate must not lock out the
caller of Free while waiting, or a decadlock will result). Thus, the programmer is
always obliged to restore the monitor invariant (return the monitor data to a "good
state”) before doing a waAr. ’

NOTIFY, on the other hand, retains the lock, and may thus be invoked without restoring
the invariant; the monitor data may be lcft in in an arbitrary state, so long as the
invariant is restored before the next time the lock is released (by exiting an entry
procedure, for example).

A NOTFY dirccted to a condition variable on which no onc is waiting is simply
discarded. Morcover, the built-in test for this casc is morc efficient than any cxplicit
test that the programmer could make to avoid doing the extra NOTIFY. (Thus, in the
example above, I'ree always docs a NOTIFY, without attempting to determine if it was
actually nceded.)

Each wAIr must be embedded in a loop checking the corresponding condition. (E.g.
Allocate, upon being notificd of the StorageAvailable condition, still loops back and
tests again to insurc that the freelist is actually non-empty.) This rechecking is
necessary because the condition, even if true when the NOTIFY is done, may become
falsc again by the time the awakened process gets to run. (Even though the freclist is
always non-cmpty when [FFree docs its NOTIFY, a third process could have called
Allocate and empticd the freelist before the waiting process got a chance to inspect
it.)

Given that a process awakening from a WAIT must be carcful to recheck its desired
condition, the process doing the NOTIFY can be somewhat more casual about insuring
that the condition is actually truc when it docs the NoTIFY. 'This Icads to the notion

Mesa 4.0 Process Update 9

of a covering condition variable, which is notified whenever the condition desired by
the waiting process is /ikely to be truc; this approach is usceful if the expected cost of
false alarms (i.e. extra wakcups that test the condition and wait again) is lower than
the cost of having the notifier always know precisely what the waiter is waiting for.

The last two points are somewhat subtle, but quite important; condition variables in Mesa act
as suggestions that their associated Boolcan expressions are likcly to be truc and should
therefore be rechecked. They do nof guarantee that a process, upon awakening from a wAIT,
will nccessarily find the condition it cxpects. The programmer should ncver write code
which implicitly assumcs the truth of some condition simply because a NOTIFY has occurred.

It is often the casc that the user will wish to notify all processes waiting on a condition
variable. This can be done using:

BROADCAST c;

This operation can be used when several of the waiting processes should run, or when some
waiting process should run, but not necessarily the head of the queue.

Consider a variation of the Storagedllocator example:

Storagedllocator: MONITOR =
BEGIN
StorageAvailable: CONDITION;

Allocate: ENTRY PROCEDURE [size: CARDINAL] RETURNS [p: POINTER] =
BEGIN
UNTIL <storage chunk of size words is available> po
WAIT Storagedvailable '
ENDLOOP;
p + <remove chunk of size words>;
END;

Free: ENTRY PROCEDURE [p: POINTER, size: CARDINAL] =
BEGIN

<put back storage chunk of size words>

BROADCAST Storagedvailable
END;
END.

In this cxample, there may be several processes waiting on the quecue of StorageAvailable,
cach with a diffcrent size requirement. It is not sufficicnt to simply NOTIFY the hecad of the
qucue, since that process may not be satisfied with the newly available storage while another
waiting process might be. This is a casc in which BROADCAST is nceded instcad of NOTIFY.

An important rule of thumb: it is always correct to use a BROADCAST. NOTIFY should be used
instcad of BROADCAST if both of the following conditions hold:

It is expected that there will typically be scveral processes waiting in the condition
variable qucue (making it cxpensive to notify all of them with a BROADCAST), and

Mesa 4.0 Process Update 10

It is known that the process at the head of the condition variable queuc will always
be the right onc to respond to the situation (making the multiple notification
unnccessary);

If both of these conditions arc met, a NOTIFY is sufficient, and may represent a significant
cfficiency improvement over a BROADCAST. The allocator example in scction 10.2.1 is a
situation in which NOTIFY is prefecrrablc to BROADCAST.

As described above, the condition variable mechanism, and the programs using it, are
intended to be robust in the face of "extra" NOTIFYs. The next section explores the opposite
problem: "missing” NOTIFYs. .

10.3.2. Timeouts

One potential problem with waiting on a condition variable is the possibility that one may
wait "too long.," There are scveral ways this could happen, including:

- Hardware error (e.g. "lost interrupt")

- Software error (c.g. failure to do a NOTIFY)

- Communication ecrror (e.g. lost packet)
To handle such situations, waits on condition variables are allowed to time out. This is done
by associating a timeout interval with each condition variable, which limits the dclay that a
process can experience on a given WAIT opcration. If no NOTIFY has arrived within this time
interval, onc will be generated automatically, The Mecsa language does not currently have a

facility for sctting the timcout ficld of a CONDITION variable. Sce the runtime documecntation
for the description of the system procedure provided for this operation.

The waiting process will perceive this event as a normal NOTIFY. (Some programs may wish to
distinguish timcouts from normal NOTIFYs; this requires checking the time as well as the
desired condition on e¢ach iteration of the loop.)

No facility is provided to time out waits for monitor locks. This is because there would be,
in general, no way to recover from such a timecout.

104. More about Monitors

The next few scctions decal with the full generality of monitor locks and monitors,

10.4.1. The LOCKS Clause

Normally, a monitor’s data compriscs its global variables, protected by the special global
variable LOCK:

LOCK: MONITORLOCK;

This implicit variable is dcclared automatically in the global framc of any module whose
heading is of thc form:

M: MONITOR [arguments}] WMPORTS . . . EXPORTS . . . =

Mesa 4.0 Process Update 11

In such a monitor it is gencrally not necessary to mention LOCK cxplicitly at all. For more
general use of the monitor mechanism, it is nccessary to declare at the beginning of the
monitor module cxactly which MONITORLOCK is to be acquirced by cntry procedures. This
declaration appcars as part of the program type constructor that is at the head of the module,
The syntax is as follows:

ProgramTC i1z ... | MONITOR Parameterlist RetumsClause LocksClause

LocksClause ::= empty | LOCKS Expression |
LOCKS Expression USING identifier : TypeSpecification

If the LocksClause is empty, entry to the monitor is controlled by the distinguished variable
LOCK (automatically supplicd by the compiler), Otherwise, the LocksClause must dcsignate
a variable of typec MONITORLOCK, a rccord containing a distinguished lock ficld (see scction
10.4.2), or a pointer that can be dereferenced (perhaps scveral times) to yicld one of the
preceding. If a LocksClause is present, the compiler does not generate the variable LOCK,

If the usiNG clause is absent, the lock is located by evaluating the LOCKS expression in the
context of the monitor’s main body; i.c., the monitor’s parameters, imports, and global
variables are visible, as are any identifiers made accessible by a global oreN. Evaluation
occurs upon entry to, and again upon ecxit from, the entry procedurcs (and for any wWAITs in
entry or internal procedures). The location of the designated lock can thus be affected by -
assignments within the procedure to variables in the LOCKS cxpression. To avoid disaster, it
is essential that each reevaluation yield a designator of the same MONITORLOCK. This case is
described further in section 10.4.4,

If the USING clause is present, the lock is located in the following way: every entry or internal
procedure must have a parameter with the same identifier and a compatible type as that
specified in the usING clausc. The occurrences of that identificr in the LOCKS clause are .
bound to that procedure paramecter in every entry procedure (and internal proccdure doing a
wAIr). The same care is neccssary with respect to recvaluation; to cmphasize this, the
distinguished argument is trcated as a rcad-only value within the body of the procedure. Sce
scction 10.4.5 for further details.

10.4.2. Monitored Records

For situations in which the monitor data cannot simply be the global variables of the
monitor module, a monitored record can bce used:

r: MONITORED RECORD [x: INTEGER, . . .];

A monitored rccord is a normal Mesa record, except that it contains an automatically
declared ficld of type MONITORLOCK. As usual, the monitor lock is used implicitly to
synchronize cntry into the monitor code, which may then access the other ficlds in the
monitored rccord. The ficlds of the monitored record must not be accessed except from
within a monitor which first acquires its lock. In analogy with thc global variable case, the
monitor lock ficld in a monitored record is given the special name LOCK; gencrally, it need
not be rcferred to cxplicitly (except during initialization; sce scction 10.6).

A fine point:

A more general form of monitor lock declaration is discussed in scction 10.4.6

CAUTION: If a monitored record is to be passed around (c.g. as an argument to a proccdure)
this should always be done by reference using 4 POINTER TO MONITORED RECORD. Copying a

Mesa 4.0 Process Update 12

monitored rccord (c.g. passing it by valuc) will generally lead to chaos.

10.4.3. Monitors and module instances

Even when all the procedures of a monitor arc in onc module, it is not quite correct to think
of the module and the monitor as identical. For onc thing, a monitor module, like an
ordinary program module, may have several instances. In the most straightforward case, cach
instance constitutes a scparate monitor. More gencrally, through the use of monitored
records, the number of monitors may be larger or smaller than the number of instances of
the corresponding module(s). The crucial observation is that in all cases:

There is a one-to-one correspondence between monitors and monitor locks.

The generalization of monitors through the usc of monitored records tends to follow one of
two patterns:

Multi- module monitors, in which several module instances implement a single
monitor.

Object monitors, in which a single module instance implements several monitors.

A fine point:

These two patterns are nof mutually exclusive; multi- module object monitors are possible, and may
occasionally prove nccessary.

10.4.4. Multi- module monitors

In implementing a monitor, the most obvious approach is to package all the data and
procedures of the monitor within a single module instance (if there arec multiple instances of
such a module, they constitute scparate monitors and sharc nothing cxcept code.) While this
will doubtless be the most common technique, the monitor may grow too large to be treated
as a single module.

Typically, this leads to multiple modules. In this case the mechanics of constructing the
monitor arc changed somewhat. There must be a central location that contains the monitor
lock for the monitor implemented by the multiple modules. This can be done cither by
using a MONITORED RECORD or by choosing one of the modules to be the "root" of the
monitor. Consider the following example:

BigMonRoot: MONITOR IMPORTS .. . EXPORTS , .. =
BEGIN
monitorDatuml: . . .
monitorDatun?: . . .

.

pl: PUBLIC ENTRY PROCEDURE . . .
END.
BigMonA: MONITOR
LOCKS roo! -- could cquivalently say root. LOCK

IMPORTS rool: BigMonRoot . . . EXPORTS ... =
BEGIN

Mecesa 4.0 Process Update 13

P2: PUBLIC ENTRY PROCEDURE . , .
Xx « root.monitorDatuml; -- access the protected data of the monitor

END,
BigMonl3: MONITOR
LOCKS root!

IMPORTS root: BigMonRoot . . . EXPORTS ... =
BEGIN OPEN rool,

Pp3: PUBLIC ENTRY PROCEDURE . . . :
monitorDatum? « . .., -- access the protected data via an OPEN

END.
The monitor BigMon is implemented by threc modules. The modules BigMonA and
BigMonB have a LOCKS clausc to specify the location of the monitor lock: in this case, the
distinguished variable LOCK in BigMonRoot. When any of the entry procedures pl, p2, or p3

is called, this lock is acquired (waiting if nececssary), and is releascd upon rcturning. The
reader can verify that no two independent processes can be in the monitor at the same time.

Another means of implementing multi-module monitors is by means of a MONITORED
RECORD. Usc of opeN allows the fields of the record to be referenced without qualification.
Such a monitor is written as:

MonitorData: TYPE =MONITORED RECORD [x: INTEGER, . ..];

MonA: MONITOR [pm: POINTER TO MonitorData]
LOCKS pm
IMPORTS . . .
EXPORTS . .. =
BEGIN OPEN pm;
P:; ENTRY PROCEDURE [. .] =
BEGIN

x « x-H; -- access to a monitor variable
END;

END,

The tocks clause in the heading of this module (and cach other module of this monitor)
- leads to a MONITORED RECORD. Of course, in all such multi-module monitors, the LOCKS
clause will involve onc or more levels of indirection (POINTER TO MONITORED RECORD, etc.)
since passing a monitor lock by valuc is not mcaningful. As usual, Mcsa will providc one or
more levels of automatic dercferencing as neceded.

Morc gencrally, the target of the Locks clause can cvaluate to a MONITORLOCK (i.e. the
cxample above is cquivalent to writing "Locks pm.LOCK"),

CAUTION: The meaning of the target expression of the LOCKS clausc must not change between
the call to the entry procedure and the subscquent return (i.c. in the above example, changing
pm would invariably be an crror) since this would Icad to a different monitor lock being
relcased than was acquired, resulting in total chaos.

Mesa 4.0 Process Update 14

There are a few other issucs regarding multi- module monitors which arise any time a tightly
coupled picce of Mesa code must be split into multiple module instances and then spliced
back together. For cexample:

If the lock is in a MONITORED RECORD, the monitor data will probably nced to be in
the record also. While the global variables of such a multi-module monitor are
covered by the monitor lock, they do not constitutc monitor data in the normal sense
of - the term, since they arc not uniformly visible to all thc module instances.

Making the internal procedures of a multi-instance monitor PRIVATE will not work if
onc instance wishes to call an internal procedure in another instance. (Such a call is
perfectly acceptable so long as the caller already holds the monitor lock). Instead, a
sccond interface (hidden from the clicnts) is nceded as part of the "glue” holding the
monitor togcether. Note however, that Mcsa cannot currently check that the procedure
being called through the interface is an intcrnal one (sce section 10.2.4).

A fine point:
The compiler will complain about the PUBLIC INTERNAL procedures, but this is just a warning,

10.4.5. Object monitors

Some applications deal with objects, implemented, say, as records named by pointers. Often
it is necessary to insurc that operations on these objects are afomic, i.e., once the operation
has begun, the object will not be otherwise referenced until the operation is finished. If a
module instance provides opcrations on some class of objects, the simplest way of
guarantecing such atomicity is to make the module instance a monitor. This is logically
correct, but if a high dcgree of concurrency is expected, it may create a bottleneck; it will
scrialize the opcrations on all objects in the class, rather than on each of them individually.
If this problem is decmed serious, it can be solved by implementing the objects as monitored
records, thus cffectively creating a scparate monitor for cach object. A single module
instance can implement the operations on all the objects as entry procedures, cach taking as a
parameter the object to be locked. The locking of the parameter is specified in the module
heading via a LocksClause with a USING clause. For cxample:

ObjectRecord: TYPE = MONITORED RECORD [. . .];
ObjectHandle: TYPE = POINTER TO ObjectRecord;

ObjectManager: MONITOR [arguments)
LOCKS object USING object: ObjectHandle
IMPORTS . . .
EXPORTS . . . =
BEGIN
Operation: PUBLIC ENTRY PROCEDURE [object: ObjectHandle, . . .]
BEGIN

END;

END.

Notc that the argument of USING is cvaluated in the scope of the arguments to the cntry
procedures, rather than the global scope of the module. In order for this to make sense, cach
entry procedure, and cach internal procedurc that docs a WAIT, must have an argument which

Mesa 4.0 Process Update 15

matches cxactly the name and type specificd in the UsING subclause. All other components of
the argument of LOCKS arc cvaluated in the global scope, as usual.

As with the simpler form of LOCKS clause, the target may be a morc complicated cxpression
and/or may cvaluate to a monitor lock rather than a monitored record. For cxample:

LOCKS p.q.LOCK USING p: POINTER TO ComplexRecord . . .

CAUTION: Again, the meaning of the target expression of the LOCKS clause must not change
between the call to the entry procedure and the subsequent rcturn. (I.e. in the above example,
changing p or p.g would almost surcly be an ecrror.)

CAUTION: It is important to note that global variables of objcct monitors are very dangerous;
they arc not covered by a monitor lock, and thus do not constitute monitor data. If used at
all, they must be sct only at module initialization time and must be read-only thereafter.

10.4.6. Explicit declaration of monitor locks
It is possiblc to declare monitor locks explicitly:
myLock: MONITORLOCK;

The normal cases of monitors and monitored rccords are essentially stylized uses of this
facility via thc automatic declaration of LOCK, and should cover all but the most obscure
situations. For cxample, explicit delarations arc useful in defining MACHINE DEPENDENT
monitored records. (Notc that the LOCKS clause becomes mandatory when an cxplicitly
declared monitor lock is used.) More generally, explicit declarations allow the programmer
to .declare records with several monitor locks, declare locks in local frames, and so on; this
flexibility can lead to a wide varicty of subtle bugs, hence use of the standard constructs
whencver possible is strongly advised.

10.5. Signals

10.5.1. Signals and Processes

Each process has its own call stack, down which signals propagate. If the signaller scans to
the bottom of the stack and finds no catch phrase, the signal is propagated to the debugger.
The important point to note is that forking to a procedure is different from calling it, in
that the forking creates a gap across which signals cannot propagate. This implics that in
practice, one cannot casually fork to any arbitrary procedurc. The only suitable targets for
forks arc procedures which catch any signals they incur, and which never gencrate any signals
of their own.

10.5.2. Signals and Monitors

Signals require special attention within the body of an cntry procedure. A signal raised with
the monitor tock held will propagate without relcasing the tock and possibly invoke arbitrary
computations. For crrors, this can be avoided by using the RETURN WITH ERROR construct.

RETURN WITH ERROR NoSuchObject,

Mesa 4.0 Process Update 16

Recall from Chapter 8 that this statement has the effect of removing the currently exccuting
frame from the call chain before issuing the ERROR. If the statement appears within an entry
procedure, the monitor lock is rclcascd before the error is started as well. Naturally, the
monitor invariant must be restored before this operation is performed.

For cxample, consider the following program segment:
Failure: ERROR [kind: CARDINAL] = CODE;

Proc: ENTRY PROCEDURE [. . .] RETURNS [cl, ¢2: CHARACTER] =
BEGIN
ENABLE UNWIND =

IF condl THEN €ERROR Failure[1];
IF cond2 THEN RETURN WITH ERROR Failure[2];

END;
Exccution of the construct ERROR Iailure[1] raises a signal that propagates until some catch
phrase specifies an exit. At that time, unwinding begins; the catch phrase for UNWIND in Proc
is exccuted and then Proc’s frame is destroyed. Within an cntry procedure such as Proc, the

lock is held until the unwind (and thus through unpredictable computation performed by
catch phrases).

Execution of the construct RETURN WITH ERROR Failure[2] releases the monitor lock and
destroys the frame of Proc before propagation of the signal begins. Note that the argument
list in this construct is dctermined by the declaration of Failure (not by Proc’s RETURNS
clause), The catch phrase for UNWIND is not exccuted in this case. The signal Failure is
actually raiscd by the system, after which Failure propagates as an ordinary crror (beginning
with Proc’s caller).

When the RETURN WITH ERROR construct is used from within an intcrnal procedure, the
monitor lock is not released; RETURN WITH ERROR will relcase the monitor lock in precisely
those cases that RETURN will.

Another important issue regarding signals is the handling of UNWINDS; any entry procedure
that may experience an UNWIND must catch it and clean up the monitor data (restore the
monitor invariant):

P: ENTRY PROCEDURE [..] =
BEGIN ENABLE UNWIND = BEGIN <{restore invariant> END;

END;

At the end of the UNwIND catchphrase, the compiler will append code to relecase the monitor
lock before the frame is unwound. It is important to note that a monitor always has at lcast
onc clcanup task to perform when catching an UNWIND signal: the monitor lock must be
released. To this cnd, the programmer should be surc to place an cnable-clause on the body
of cvery entry procedure that might cvoke an UNWIND (directly or indircctly). [f the monitor
invariant is alrcady satisfied, no further cleanup need be specificed, but the null catch- phrase
must be written so that thc compiler will gencrate the code to unlock thc monitor:

BEGIN ENABLE UNWIND = NULL}

Mesa 4.0 Process Update 17

This should bc omitted only when it is certain that no UNWINDS can occur.

Another point is that signals caught by the OptCatchPhrase of a WAIT opcration should be
thought of as occurring after rcacquisition of the monitor lock. Thus, like all other monitor
code, catch phrases within a monitor arc always cexecuted with the monitor lock held.

10.6. Imitialization

When a new monitor comes into existence, its monitor data will generally need to be set to
some appropriate initial values; in particular, the monitor lock and any condition variables
must be initialized. As usual, Mesa takes responsibility for initializing the simple common
cascs; for the cases not handled automatically, it is the responsibility of the programmer to
providc appropriate initialization code, and to arrange that it bc exccuted at the proper time.
The two types of initialization apply in the following situations:

Monitor data in global variables can be initialized using the normal Mesa initial
value constructs in declarations. Monitor locks and condition variables in the global
frame will also be initialized automatically (although in this case, the programmer
does not write any explicit initial value in thc declaration).

Monitor data in records must be initialized by the programmer. Systcm procedures
must be uscd to initialize the monitor lock and condition variables. Sce the runtime
documentation for the descriptions of appropriate proccdures. :

A fine point:

If a variable containing a record is declared in a frame, it is normally possible to initialize it
in the declaration (i.e. using a constructor as the initial value); however, this does notr apply if
the record contains monitor locks or condition variables, which must be initialized via calls to

system procedures. ’

Since initialization code modifies the monitor data, it must have cxclusive access to it. The
programmer should insure this by arranging that the monitor not be called by its client
processes until it is ready for use.

Inter- Office Memorandum

To Mcsa Users Date May 31, 1978
From John Wick | Location Palo Alto
Subject Mcsa 4.0 Binder Update Organizalion SDD/SD

XEROX

Filed on: [IRIS] <MESA>DOC> BINDER40.BRAVO

This memo outlines changes made in the Mesa binder since the last release (October 17,
1977). (In addition, the list of change requests closed by Mcsa 4.0 will appear as part of the
Software Release Description.)

Except for the internal Bep file format, there are no known incompatabilities with the Mesa
3.0 binder. No changes to cxisting configuration descriptions are required; but because of
-the file format change, all configurations must be rebound.

If you are not concerned with the new features described in the major headings below, and
you want to get on with Mesa 4.0, skip the rest of this memo for now, and come back to it
later,

Code Packing

It is now possible to pack together the code for several modules into a single scgment. This
is useful for two reasons:

Since the code is allocated an integral number of pages, there is some wasted space in
the last page ("brcakage"). If several modules are combined into a single scgment,
the breakage is amortized over all the modules, and there is less waste on the average.

All the modules will be brought into and out of mcmory together, as a unit; a
reference to any module in the pack will cause all the code to be brought in.
Modules which arc tightly coupled dynamically arc good candidates for packing (for
cxample, resident code should probably always be packed).

Of course, it is possible to "over pack™ a configuration; the segments might become so large
that there will never be room in memory for more than onc of them at a time (this should
remind you of an overlay system). Packing is a tradeoff, and should be used with caution.

Syntax

The segments arc specificd at the beginning of the configuration by giving a list of the
modulcs which comprise cach onc. Any number of PACK statements may appcar. 'The scope
of the packing spccification is the whole configuration, and not subconfigurations or
individual module instanccs, because there is at most one copy of a module’s code in any
configuration (if ~all gocs well).

Mesa 4.0 Binder Update 2

ConfigDescription ::= Directory Packing Configuration .

Packing = empty | PackSeries ;
PackSeties = PackList | PackSeries ; PackList
PackList = PACK [dList

Each PackList defines a single segment; the code for all the modules in the IdList will be
packed into it. The identificrs in the IdList must refer to modules in the configuration, and
not to module instances; it is the code and not the global frames that arc being packed (the
frames are always packed when they are allocated by the loader).

It is illcgal to specify the same module in morc than one PackList. Even though there may
be multiple instances of the module (i.c., multiplc global frames) in thc configuration, the
code is shared by all of them, and therefore can only appear in onc pack.

Finally, it is perfectly fine to recach inside a previously bound configuration that is becing
instantiated and single out some or all of its modules for packing. Of course, you must know
something about the structure of that configuration in order to do this.

Restrictions

Obviously, the PACK statements apply only if the code is being moved to the output file;
otherwise, the pack lists are ignored (and no warning message is given). This allows the
programmer to debug the configuration without shuffling the code from file to file, thercby
saving time. When making the final version, the packing can be effected with a binder
switch, without having to modify the source of the configuration description.

Once some modules have been packed together, they cannot be taken apart and repacked
with other modules later on, when they are bound into some other configuration.

Fine point:

If a previously bouﬁd configuration contains a pack, referencing any module of the pack gets the whole
thing. So it is possible to pack a module and a pack together, or even to pack two packs. It is never
possible to unpack a pack. '

In general, code packing should be specified only to the extent that no unpacking will ever
be desired. Once the packing is done, it can’t be undonc, unless you start over with the
individual modules.

External Links

In previous Mesa systems, links to the cxternals referenced by a program (imported
procedures, signals, errors, frames, and programs) werc always stored in the module’s global
frame. This allows cach instance of a module to be bound differently, and it allows binding
to be done at runtime without modification of the modulc’s code scgment. However, it has
two drawbacks:

The links arc only referenced by the module’s code, and are therefore not needed
when the code is swapped out. Hence, the links logically belong in the code segment.,

If two instances of a modulc are bound identically (the usual case), the links must be
stored twice.

Mesa 4.0 Binder Update 3

Fine Point:

To determine the amount of space required for cxternal links, see the compiler’s typescript
file. Each- link occupies one word.

The Mcsa 4.0 binder thercfore optionally places links in the code segment. This option is
enabled by constructs in the configuration language, and is further controlled by binder and
loader command modificrs (switches).

Syntax

For each component of a configuration, the link location is spccified using the LINKS
construct defined below. The default is frame links, as in Mecsa 3.0.

Links = empty | LINKS : CODE | LINKS : FRAME

A link specification can optionally be attached to cach instantiation of a module, overriding
the current default, so that thc link location can be different for cach instance,

CRightSide it= ltem Links | Item [] Links | Item [IdList] Links

Alternately, the link option can be specified in the configuration header. This merely -
changes the default option for the configuration; it will apply to all components (including
nested configurations) unless it is cxplicitly overridden.

CHead :1= CONFIGURATION Links Imports CExports ControlClause

This construction works much like the PUBLIC / PRIVATE options in Mesa, and it nests in the
samec way. A link option attached to a configuration changes the dcefault for all components
within it, but that default can be overriden for a particular module (or nested configuration) -
by spccifying a different link option.

Restrictions

This scheme has the conscquence that, if a module with code links has multiple instances,
each instance must be bound the same. For cxample, it is usually not meaningful to specify
code links if the code is shared by frames residing in several different Main Data Spaces.

As with code packing, the code links option takes c¢ffect only when the code is being moved
to the output file. At this point, the binder will make room for the links as it copics the
code if any module sharing that code has rcquested code links. Again, this allows a
programmer to dcbug without the expense of moving the code (using frame links), and then
to cffect the code links option with a binder switch, without changing the sourcc of the
configuration description.

Fine point:

Once space for code links has been added to a configuration, it cannot be undone by a later binding.
On the other hand, space for code links can always be added to a (previously bound) configuration,
even if it did not specify code links in its description,

Using code links has onc drawback: it slows down thc binding and loading process, as the
code must be swapped in and rewritten. “I'he binder must make room in the code scgment
for the links, as described above. And becausce the loader resolves imports of previously
loaded modules, as well as the imports of the module being loaded, it may have to swap in

Mesa 4.0 Binder Update 4

(and perhaps update and swapout) the code segment for every module in the system.

Fine point:

In an cxperiment, it took about 2.5 scconds to load a medium size configuration (Mesa itself) with
frame links (this includes a fixed overhcad of about 1.5 scconds for a dircctory scarch). With code
links, factoring out the fixed overhead, it was almost cight times longer (but it still took only nine
scconds).

Finally, the loader will not automatically attempt to use code links, even if the space is
available in the code segment. A loader switch ("1") must be used to effect this option.

Context Switching

The command line switch /R (for run) is used to specify that the Binder should run some
other program rather than returning to the Alto Exccutive. Both ".image" and ".run" files
may be spccified. If there is no explicit extension, ".image" is assumed. Any switches after
the R and any other text remaining in the command linc after the file with the /7R switch
will be copied to Com.Cm for inspection by the ncw program.

Examples:

"Binder SomcConfig/g Mecsa/r SomeConfig” will bind SomeConfig and then run
Mecsa.image as if you had typed "Mcsa SomeConfig".

"Binder SomcConfig/g Mesa/rd OtherConfig/-s SomeConfig" will bind SomeConfig
and then run Mcsa.image as if you had typed "Mesa/d OtherConfig/-s SomcConfig"

"Binder SomeConfig/g Ftp.run/r Store SomeConfig.bcd” will bind SomeConfig and
then run Ftpoaun as if you had typed "Ftp.run Store SomcConfig.bcd”

Fine points:

The last specification before the file with the /R switch must have the /G (go) switch to indicate the
end of the previous command. .

You can run Bravo using the /R switch, but the current version (7.1) will not correctly find switches
or arguments on the command line.

LError Mecssages

The binder’s crror messages have been improved substantially. Each message includes the
corresponding source line of the configuration description (if available), and more
information from the data base is available for most common crrors.

Fatal crrors are now reported in a fashion similar to the compiler; the signal and message
arc given in octal, and should be included in any change request reporting a fatal binder
CITOT.

Distribution:
Mesa Users
Mcsa Group

Inter- Office Memorandum

To Mcsa Uscrs Date May 31, 1978
From John Wick Location Palo Alto
Subject Mcsa 4.0 System Update Organization SDD/SD

XEROX

Filed on: [IRIS]<MESA>DOC>SYSTEM40.BRAVO

This memo outlines changes made in the Mesa system code since the last release (October 17,
1977). It also dicusscs a number of internal changes made in the system and the microcode;
scc also the Mesa 4.0 Microcode Update. (In addition, the list of change requests closed by
Mesa 4.0 will appecar as part of the Software Release Description.)

External Interfaces

Names in square brackets refer to sections of the Mesa System Documentation which has
also been updated. More details can be found there and in other documentation
dccompanying this rclcase,

Alto Reserved Locations

Mesa software now conforms to the most recent allocation of Alto reserved locations (Alto:
A Personal Computer System, Hardware Manual, February, 1978, Appendix H). The only
page onc location reserved by Mesa is the disaster flag (location 456B).

Basic Mesa

Basic Mcsa has been reclassified as releascd software. To facilitate development of special
purposc systems, Basic Mcsa no longer includes a keyboard handler; the procedure for
adding onc is described in the documentation on the Keyboard Package. [Section 3]

CheckPoint/ Restart

Procedurcs have been added for writing checkpoint image files, and the bootstrap loader has
been modified to load them. Checkpoint files contain only the data (so creating them and
loading them is fast); unlikc Makelmage, MakeCheckPoint docs not copy code or any other
files to the image file, Note this means that none of the files referenced by the checkpoint
can be updated or modified in any way. [Image Files]

Code Links

The loader has been cxtended to optionally write external links in the code rather than the
global frame (assuming codc links were specificd in the configuration description). To
cffect this option, the loader /1 switch must be used. Note that if a module calls for code
links, loading it will be slower, as the code scgment must be swapped in and rewritten, To
decrcase resident storage requirements, all standard Mesa systems arce configured with links
in the code. [Modules]

Mesa 4.0 System Update 2

Convert

Due to cxtremely limited microcode space, the convert instruction is no longer part of the
Mesa instruction sct. It can be simulated with BitBIt (sce the system display package).
[Display] '

Debugger Call

A mcthod of invoking the dcbugger explicitly, without generating a signal, is now available;
it causcs minimal disruption of the current state of the debuggee. The inline CallDebugger
is defined in MiscDefs. [Miscellancous]

Deleting Configurations

The procedurc UnNewConfig is now available for unloading a configuration from a running
system. The configuration’s global frames are deallocated and its code scgments are relcased.
In addition, all cxisting modules are checked for bindings to the configuration being
unloaded. [Modules]

Display Package

A smaller display package, similar to the Bepl version, is now standard. It supports a simple
display oricnted tcletype-like interface and an optional typescript file (scc FontDefs and
DisplayDefs). The window package is available as a scparate configuration (which is no .
longer supported); sec Window Package. [Display Package]

File Lengths

File lengths and file length hints are no longer kept as a permanent part of each file object.
A scparate (and optional) length object is allocated only when the length of a file is
requested. Since length objects are not required for files containing code segments, this
substantially reduces the amount of resident object space required to handle a large number
of Bcos. [File Package] ’

Free Storage Package

The free storage package has been modified so that it protects cach zone (including the
system supplied free storage heap) with a monitor. This cnables scveral processes to share
the heap. [Storage Management]

Interrupts

For compatability with the ncw process mechanism, a Nova interrupt now causcs a "naked
notify” to- one of sixteen condition variables. Pointers to these condition variables are
contained in fixed locations in page zero (sece ProcessDefs). [Processes and Monitors]

Images

All symbol table rcferences and options have been removed from the system, and the
interface to Makelmage has been changed to reflect this (the symbolsTolmage parameter has
been dropped). The image file format has also been revised to support checkpoint/restart
files (sce abovc). [Image Files]

KeyStreams

The keyboard routines have been revised to utilize the new process mechanism; a condition
variable is notificd when characters are available in the current keystrcam. The "idle
procedure” has been replaced by a wWAm on this condition variable. [Keyboard Package]

Mesa 4.0 System Update 3

Memory Management

A number of options have been added to the memory management and swapping fFacilities.
Unlocked read- only segments, such as fonts, arc now swapped automatically (previously, this
applicd only to code segments). The interface to swapping procedures has been expanded to
include an (optional) Allocinfo paramcter, which provides morc information about how the
memory should be allocated. The new facilitics arc defined in AllocDefs; swap stratagies and
swapping proccdures are now dcfined therc. [Segment Package]

Pause to Debugger

A switch has been added to the NEw command which will invoke the debugger as soon as a
configuration has been loaded (in command line mode, before it is started). Also, holding
down the control-swat keys while an image file is loaded will now work correctly (the
debugger will be invoked as soon as possible). [Section 4] '

Process Structure

A new process mechanism which supports monitors and condition variables, wairs and
NOTIFYs, and FORK and JOIN has been implemented. The BLOCK operation has been climinated
(a Yield procedure is available). Note that several refinements (and some revisions) of the
original proposal (in the Pilot Functional Specification) have been made. A ncw chapter in
the Mesa Language Manual provides complete documentation; additional facilities which
are not part of the language are described in the system documention (and ProcessDefs).
[Processes and Monitors]

Warning: In general, facilities provided by the system are not protected by monitors. Since
Pilot will be available soon, we have not redesigned and retrofitted the Alto/Mesa system to
support preemptive processes (other than simple interrupt routines, as before). Except for
the free storage package (sce above), system facilities shared by more than one process must
be protected by a user supplied set of monitor entry procedures.

Run Image

A module is now available which will invokc a Mesa image file (or a Bepl run file) from the
Mcsa environment, without rcturning to the Alto Exccutive. Any Mcsa subsystem which
supports command linc input (c.g., the compiler or binder, or even-the Mesa system itself)
can be invoked considerably faster using this facility. [Image Tiles]

StreamlO

To make instantiating multiple instances of this module casicr, StreamlO no longer takes
parameters specifying the input and output streams. Procedurcs are available which override
the default settings. [StrcamlO Package]

StringDefs

To facilitate conversion from binary to alphanumecric data, AppendNumber and other related
proccdurcs have been added to StringDefs, WordsForString now cxpects a cardinal. Bcepl
strings now usc packed arrays. [String Package] '

SystemDefs

A simplified interface to the new memory management facilitics has been added in the form
of two additional procedurcs: AllocateResidentSegment and AllocateResidentPages. [Storage
Management]

TrapDefs

Documentation on a number of system generated traps is now available in a new scction of
the system document. Most traps arc converted into signals of the same name: StartFault,
ControlFault, UnboundProcedure, StackError, ctc. ['I'raps]

Mesa 4.0 System Update 4

UnNew

This procedure no longer supports the option of adding the module’s frame to the free
frame heap (it will be returned there only if it was allocated from therc). Note that this
procedure does not check for other modules bound to the onc being deleted. Beware of
dangling references! [Modules]

Unsigned Compare

The unsigned compare operation (usc) has been removed from InlineDefs. Use of the
appropriatc signed or unsigned comparison operators should be controlied by the type of the
variables involved: CARDINAL (unsigned) or INTEGER (signed). Sce the Mesa language Manual
and the Mesa 4.0 Compiler Update for more information.

User Interface

Modules to be loaded into the standard Mesa system (and Basic Mesa) can now be specified
on the command line (and in command files). A number of switches arc available to
control loading options; these arc described in the Mesa User’s Handbook.

VMnotI'ree

The signal VMnotFree was inadvertently respelled (it used to be VMNotFree). [Segment
Package]

Window Package

The Mesa window package is no longer part of the standard Mesa system; it is available as a
scparate configuration. WindEx rcplaces WManager for optional usc in the debugger. The
definitions of BitBlt and Convert have been removed from RectangleDefs. Support for a
blinking cursor has been added. [Window Package]

Internal Interfaces

The following changes are internal to the implementation and do not affcct public
interfaces. They may affect performance and/or space requircments, however. For scveral
of these items, furthur information can be founded in the Mesa 4.0 Microcode Update.

Alto/ Mesa Microcode

The microcode has becn completely rewritten to improve its cxecution speed. The major
changes are: 1) scveral instructions must now be aligned on word boundaries and, 2) certain
instructions (notably jumps) rcquirc thc evaluation stack to be empty cxcept for their
operands. (As a side effect of the rcorganization, new opcode numbers have becn assigned
to most instructions.) Wc have obscerved improvements in raw cxccution speed of 20-50%,
depending on the dynamic instruction mix.

Alto File System

The hint in the DiskDescriptor containing the number of free disk pages is now maintained
properly. The declarations dcescribing Sys.Log have been deleted, since it is no longer
supported by the Bepl OS (versions 14 or later).

Alto Time Standard

The time conversion package is now part of standard system. UnpackedTime and PackDT
have becen cxtended to support GMT, time zones, and daylight savings time (for
compatability with Bcpl OS versions 14 or greater).

Mesa 4.0 System Update 5

Bed IFormat

This structure has been revised to achieve a space reduction of about 10%. A scgment table
and name table have been added, as well as support for packed code segments and code
links. Provision “for a source version stamp has also becen included.

BitBlt

BitBlts arec now performed entirely in microcode, using the ROM subroutine. They are not
only faster, but interruptable as well. BitBltDefs now contains the interface to this
opcration; it has been updated to include the cxtended memory option.

Cleanup Procedures

Adding a clcanup procedure must now specify the conditions under which the procedure
should be called. Scveral clcanup procedurcs are no longer called on swapping to and from
the dcbugger.

Warning: Since the interrupt key may preempt a process holding a monitor lock, cleanup
procedures must not attempt to enter any monitor. This severly restricts the operations that
can be safely performed by cleanup procedures.

Code Packing

All resident code now employs the packed code option implemented by the binder.

Code Segments

The format of code segments has been revised to accomodate the new options for handling
external links (storing them in the code and storing them backwards from the frame or code
basc). Also note that when scveral modules arc-packed into the same code segment, only the
LRU bit of the first module is examined by the swapper.

ControlDef's

The declarations of control links and local and global frames now usec overlaid variant
records. The AV, SD, and GFT have been preassigned constant values as in the PrincOps; the
REGISTER construct has been revised accordingly (see also Trap Parameters). The assignment
of System Data indicics is now contained in SDDefs.

Descriptor Instructions

The descriptor instructions (pEscB and peEsceS) described in the PrincOps have been
implemented.

External Links

External links are now stored and indexed backwards from the global frame base (or code
basc); this climinates the "effective” minimum frame size overhead of cighteen. The total
number of cxternal procedures, programs, signals, and ecrrors per module must be less than
256.

Field Descriptors

The format of Ficld descriptors has been revised to agree with the DO design. The read ficld
stack (RFs) and rcad ficld code (RFC) instructions have been implemented.

Frame Allocation

The aLLoc and FRee instructions arc now implemented in microcode; thus the overhead for
large (greater than five word) paramcter and rcsult records has been drastically reduced.

Mesa 4.0 System Update 6

Global FFrame FFormat

The global frame overhead has been reduced from ten to three words; all ficlds relating to
the old binding scheme have been climinated (see also External Links and Main Body
Procedure).

Kernel Function Calls

Scveral new kernel functions have been added as a result of other cxtensions (scc SDDefs),
Most entries of public interest are now decfined as inlines in definitions modules (e.g.
FrameDefs, LoaderDefs). Provision has been made for all of the traps defined in the
PrincOps.

Load State Format

A change in format has reduced the size of the load state substantially, The maximum
number of Bcps which can be loaded into a single image file is now about forty.
Long Integers

Addition, subtraction, and comparison of long (32-bit) intcgers are now implemented in
microcode. Multiplication and division are done by software (and arc thercfore slow).
Main Body Procedure

The main body of a module is now exccuted in a separate local frame, instcad of using the
global frame. This climinates three words from the global frame overhcad (the access link,
saved pc, and rcturn link).

Nil Pointers . .
To cnable conversion and comparison of both long and short values of null pointers, the
value of NiL has been changed.

Novacode interface

To accomodate the implementation of the process opcodes in Nova code (and the removal
of block, convert, and bitblt), the interface to the Nova has been revised.
OSStaticDefs

The format of the OS statics region has been revised to reflect the changes in OS version 14
(sce the Alto Operating System Reference Manual). .

Pair Instructions

A number of the pair instructions described in the PrincOps have been implemented on the
Alto (notably the Rxup, RILP, and RIGP families).

Processes and Monitors

Due to severe space limitations, all of the process/monitor opcodes (enter, wait, reenter,
notify, broadcast, exit, and rcquecuc) arc implemented in Nova code, and thercfore are
considerably slower (reclative to other instructions) than they will be on the DO.

Real Data Type

The compiler now gencerates KFCBs to perform rcal arithmetic. The sb contains entrics for
the following floating point opcrations: FADD, FSUB, FMUL, FDIV, FCOMP, FiX, FLOAT. Note,
however, that no implementation of these operations is provided or planned.

Mesa 4.0 System Update 7

Realtime Clock

The low order ten rcaltime clock bits (maintained in a micro processor register) can now be
read by the programmer using the REGISTER construct. This feature was added in conjunction
with the program monitoring facilitics (sce Xfer Traps).

Segment and File Objects

Descriptors for files and segments are now allocated from a single pool, rather than from
scparate tables. This ecliminates considerable breakage, at some cost in the speed of
cnumeration procedurcs (which arc performed rarcly). As a consequence, objects are now
represented as true variant records (not computed or overlaid), and a numbcr of procedures
take cither data or file segments as parameters.

Shared Code Segments

A Dbit has been added to the global frame which indicates if the code is shared by other
module instances. In the common case (a single instance of cach modulc), this will
climinate scarches of the global frame table cvery time the code is swapped out.

Start Command

The Mesa Exccutive’s Start command now FORKs to the module, running it as a separate
process. This insures that the exccutive will survive and continue to accept commands even
if the user’s process is aborted.

Trap Parameters

To eliminate the possibility of clobbering the stack when (possibly nested) traps occur, all
trap paramcters are now passed in registers (of the micro processor). They are made
available to the trap routine using the REGISTER construct.

Uncaught Signals

The method of handling uncaught signals has becn revised to accomodate the new process
mechanism. Each process no longer includes an instance of the debugger’s "nub” as its root;
instead, a nub is spliced into the call stack dynamically when the uncaught signal occurs.

Xfer Traps

A mechanism has been added which will optionally cause a trap routinc to be invoked for
cach XFER opcration. In addition to performance monitoring, this facility is also useful for
finding a large class of bugs, espccially clobbers (scc TrapDefs).

Distribution:
Mesa Uscers
Mesa Group

Inter- Office Memorandum

To Mecsa Uscrs Date May 31, 1978
From Roy ILevin Location Palo Alto
Subject Mesa 4.0 Microcode Update Organization CSL

XFROX

Filed on: [IRIS}<MESA>DOC>MICROCODE40.BRAVO

This memo outlines the differences in the (Alto) Mesa microcode for release 4.0. The OIS
Processor Principles of Operation [1] ("PrincOps") is scheduled to be revised soon, and
some of thc changes indicated below will be incorporated in that revision. Others are
peculiar to the Alto implementation of Mesa and are indicated as such. This document is
only a summary of the changes in Mesa 4.0; additional dctails may be found in the
references cited at the end of this memo.

Definitions of New Notions
Two ncw instruction propertics have been introduced in the Mesa 4.0 instruction set:
Alignment

An aligned 1-byte instruction must be the last significant byte in the word. Thus, if an
aligned, 1-byte instruction appears in an cven byte position, the microcode will ignore
the contents of the odd byte in the same word. An aligned 2-byte instruction must
have both bytes in the same memory word. An aligned 3-byte instruction consists of
an aligned 1-byte opcode followed by a word containing the a and 8 bytes. In this
case, the a byte must be in the odd byte of the word following the opcode. In the 2-byte
case, padding is accomplished by use of the new instruction NOOP, which is discussed below.

Minimal stack

A minimal stack instruction cxpects its opcrands to be the only quantities on the stack,
and lcaves the stack cmpty, cxcept for any results it cxplicitly supplics.

These properties arc peculiar to the Alto implementation of Mcsa and will nof be included
in the revision of the PrincOps.

Changes to the Instruction Set

Many of the changes in the Mesa 4.0 microcode bring the instruction sct closer to the
PrincOps. In some cascs, however, constraints imposed by the Alto architecture have
prevented an cxact emulation of the PrincOps semantics. The following scctions define the
differences between the Mcesa 3.0 and 4.0 instruction scts, and relate those differences to the
PrincOps. .

Mesa 4.0 Microcode Update 2

Mesa 3.0 bytecodes not present in Mesa 4.0

LGS, SGS, LLS, SLS
LGDS, SGDS, LLDS, SLDS
WSDS

Space constraints in the Alto implementation have forced the climination of these
bytecodes. '

ADDL, ADDG

These instructions have been superseded by the PrincOps instructions LADRB and
GADRB (sce below).

RXLO0-3, WXLO0
RIGO-3, WIGO, WILO

These instructions have been superseded by the PrincOps instructions RXLP, WXLP,
RIGP, RILP, and WILP (sce below). Note that RILO has been retained, because of its
high static frequency. ’

RIL1-3

Space constraints in the Alto implementation have forced the climination of these
bytecodes. They will, however, remain in the PrincOps when it is revised. Note that
RILO has been retained in the Alto implementation.

Jumps

Mcsa 4.0 has adopted byte distances for specifying jump targets. As a result, the even
and odd byte forms of the Mesa 3.0 jump instructions have been climinated, and ‘the
entire set of jumps revised to conform almost completely to the PrincOps. JIB and
JIW are the only Mecsa 3.0 jumps that have been retained, though their scmantics have
been modified to agreec with the notion of byte distances. Dectails appcar bclow,

GFC0-15, GFCB

The GFCn instructions have been uniformly replaced with EFCn instructions, which
have similar secmantics but support destination links in cither the global frame or the
code segment. This substitution will occur in the revision of the PrincOps as well,

CVT
Space constraints in the Alto implementation have forced the climination of CVT.

BLK

The Mesa 4.0 process machinery makes BLK obsolcte, and it has been climinated. It
will be climinated in the revision of the PrincOps as well.

Mesa 4.0 bytecodes not present in Mesa 3.0

NOOP

Introduced to accommodate alignment requirements of the Alto implementation,
NOOP will not be incorporated in the PrincOps revision, Sce the scction on
"Interrupts” for additional rcquirements affccting the exccution of NOOP. Note: this
opcode is meaningful only when it appecars in the odd byte of a word.

LADRB, GADRB

Mesa 4.0 Microcode Update 3

Behave as described in [1], except:
Both are aligned instructions.

This difference will not be included in the PrincOps revision.

ADDO1

Identical to ADD as described in [1], cxcept:
ADDO! is a minimal stack instruction, assuming precisely 2 elements on the stack.

It is possible that ADDOl1 will be included in the PrincOps revision,

DADD, DSUB, DCOMP

DADD and DSUB behave as described in [1], except:
Both require minimal stack.
No carry bit is left on stack above stack pomler

DCOMP expects two double precision values on the stack. Call them A and B.
.DCOMP performs: Sign[DSUB[A,B]]. Sign(x) ={-1 if x<0, 0 if x=0, # if x>0}. The
(single precision) result of the Sign is left on the stack. DCOMP has a minimal stack
requirement. DCOMP will probably be included in the PrincOps recvision.

RXLP, WXLP
RILP, RIGP, WILP

Behave cxactly as described in [1].

RFS, WFS

RFC
RFS and WEFS are aligned, 1-byte instructions that ¢xpect the top word of the stack to
be an <a, B> pair, with a in the lcft byte. RFS and WFS pop this word from the
stack, then bchave exactly like RF and WF, respectively, using the « and 8 values
obtained from the stack word.

RFC is an aligned, 3- byte instruction that is identical to RF in all respects cxcept that
the code base register, C, is added to the computed address before the ficld is accessed.

All of these instructions use a new ficld descriptor format, which is described in the
following scction under RF, WF, and WFS. All of these instructions will be included
in the PrincOps revision.

J2-19, JB, JW

Behave as described in [1], except:
JB and JW are aligned instructions.
All jump distances are signed values, measured from the last byte of the jump
instruction instead of the first (as in the PrincOps).

These differences will not be included in the PrincOps revision,

JEQ2-9, JEQB
JNE2-9, JNEB
Bechave as described in [1], except:
JIEQB and JNIB are aligned instructions.
All jump targets are signed, PC-relative distances in bytes, measured from the
last byte of the jump instruction instead of the first (as in the PrincOps).

These differences will not be included in the PrincOps revision,

Mesa 4.0 Microcode Update 4

JLB, JGEB, JGB, JLEB
JULB, JUGEB, JUGB, JULEB
JZEQB, JZNEB

Behave as described in [1], except:
All are aligned instructions.
All jump targets are signed, PC-relative distances in bytes, measured from the
last byte of the jump instruction instead of the first (as in the PrincOps).

These differences will not be included in the PrincOps revision.

DESCB, DESCBS

Behave as described in [1], except:
Both are aligned instructions.
The result left on the stack is (gfiword A 177B)+2*aH, where gfiword is word 0
of the global frame used by the instruction (see the section on "Global Frame
Format”, below).

The difference in the result produced by these instructions will be included in the
PrincOps revision.

EFCO0- 15, EFCB

LLKB ‘
EFCO0-15 and EFCB replace the GFC0-15 and GFCB instructions of Mesa 3.0. EFCn -
behaves identically to GIFCn except in the way the destination link is determined. To
locate the destination link, the microcode cxamincs the low-order bit of the gfi word
(word 0) of the global frame. If this bit is 0, the destination link is taken from
location G-n-1, where G is the address of the current global frame. If the bit is 1, the
destination link is taken from location C-n-1, where C is the address of the current
code segment. EFCO0-15 and EFCB will preplace GFCO0-15 and GFCB in the PrincOps
revision, ‘ '
LILKB is an aligned, 2-byte instruction that computes a destination link in the same
way that EFCB does. Instecad of using it as the destination of an Xfer, however, LLKB
simply pushes the destination link on the stack, and performs no additional actions
upon it.. LLKB, with the alignment rcquirement dropped, will be included in the
PrincOps revision.

ME, MRE, MXW, MXD, NOTIFY, BCAST, REQUEUE

These are process-related opcodes, and are described separately below. All will be
included in the PrincOps revision.

Bytecodes whose semantics have changed from Mesa 3.0 to Mesa 4.0

LGDB, SGDB, LLDB, SLDB
LIW

Identical to Mcsa 3.0, except:
All are aligned instructions.

This difference will not be included in the PrincOps. revision.

JIB, JIwW

Identical to Mecsa 3.0, cxcept:
~Both are aligned instructions.
The jump target for JIB is an unsigned distance in bytes, measured from the last
byte of the JIB instruction instead of the first (as in the PrincOps).

Mesa 4.0 Microcode Update 5

The jump target for JIW is a signed distance in bytes, measured from the last
byte of the JIW instruction instead of the first (as in the PrincOps).

These differences will not be included in the PrincOps revision.

RDB, WDB
WSB, WSDB

Identical to Mcsa 3.0, except:
All are aligned instructions.

This difference will not be included in the PrincOps revision.

RSTR, WSTR

Identical to Mesa 3.0, cxcept:
All are aligned instructions.

This difference will not be included in the PrincOps revision.

RF, WF, WSF

Identical to Mesa 3.0, except:
All are aligned instructions.
Field descriptor in B byte is <p,s>, where p =bits to the left of desired field and
s = bits in field minus 1.

The difference in ficld descriptor format will be included in the PrincOps revision.

BITBLT

Identical to Mesa 3.0, except:
BITBLT is an aligned instruction.
BITBLT is a minimal stack, 2-argument instruction.
The first argument to BITBLT is unchanged from Mesa 3.0; the second is a word
containing the value zero.
BITBLT may be interrupted and subsequently restarted.

These differences are not relevant to the PrincOps revision.

DST, LST, LSTF

Identical to Mesa 3.0, cxcept:
All are aligned instructions.
Only the active portion of the stack is saved or Ioaded (including 2 words above
the top of the stack).

Except for the alignment requirement, these differences will be included in the
PrincOps revision.
RR, WR

All a byte interpretations have changed - see the section on 'lrap Handlers and
Parameters, below.

These differences will not be included in the PrincOps revision.
Process Instructions and the Mesa/Nova Interface [4]
Entry points to the Mesa cmulator
Three entry points arc defined. Control is transferred to these entry points by mcans of the

Nova JMPRAM instruction. The addresses of these entry points arc unchanged from Mecsa
3.0, but some of thc nccessary conditions at entry arc different.

Mesa 4.0 Microcode Update : 6

a) Entry point 'Mgo’ (location 420B): Nova ACO must contain thc address of a
process state vector. The cmulator will load the process state fiom this
address, then perform a control transfer using the destination link at
<AC0>-H1B and source link at <ACO>-H2B.

b) Entry point "Minterpret’ (location 400B): Mcsa emulation continues using the
current state in the emulator’s internal registers. It is the responsibility of the
invoker to cnsure that the proper process state has been loaded.

¢) Entry point 'SWRET’ (location 777B): Used only when the Mesa emulator
resides in ROM1. Sce Alto Hardware Manual, section 9.2.4..

Iixits to Nova code

The Mesa emulator may cease exccution and transfer control to the Nova ecmulator for one
of two reasons:

1) A pending interrupt must be serviced.
2) A bytecode whose actions are implemented by Nova code has been interpreted.

In both cases the Nova program counter is set to a fixed value (in page 0) before control is
passed to the Nova emulator. (In the sccond case, the PC value is different for each dlsunct
bytccode.) In addition, the following conditions hold:

a) Any paramcters expected by the Nova code appear in consccutive ACs
beginning with AC0. Any Nova accumulator whose content is not cxplicitly
supplied by the microcode will have undcfined contents. In particular, no
parameters are passed for a case 1 exit (pending interrupts). The microcode
does not interpret the values transferred to the Nova ACs.

b) The state of the current -process has been dumped to a process state vector
whosc starting address is stored in main memory at location ’CurrentState’
(location 23B).

¢) Unless a pending interrupt is being serviced (case 1), Nova interrupts have
been disabled.

d) Any results gencrated by the Nova code must be transferred to the saved
process state vector before the Mesa cmulator is restarted. The emulator
supplies no explicit mechanism to the Nova code for returning rcsults.

Nova dispatch vector

When the Nova cmulator reccives control, the PC reflects the intended action to be
performed. The Mcsa emulator uscs a dispatch vector beginning at "NovaDVloc’ (location
2518), and indexes it by the particular action required. The entrics in the dispatch vector
may be any Nova instructions, but in most cascs will be a JMP to a Nova program that
implements the desired semantics. The particular indices and relevant parameters passed are
given by thc following table:;

Mesa 4.0 Microcode Update

Index Action Parameters
0 interrupt none
1 STOP none
2-3 unused
4 ME ACO
5 MRE ACO0, AC1
6 MXW ACO, AC1, AC2
7 MXD ACO
10B NOTIFY ACO
11B BCAST ACO
128 REQUEUE AC0, AC1, AC2

Global Frame Format

The global frame overhead has been reduced to 3 words, which have the following contents:

<G>0 bits 0-8 contain the GFI,
bits 9-14 are used by software,
bit 15 is the frame links/code links indicator.
<G>H is the code base (odd = swapped out, even = address of code segment).
LG>R not used by Mecsa emulator microcode.
Xfer Traps

A mechanism to implement trapping of control transfers has beecn implemented in Mecsa 4.0,
It is described in detail in a separate document [38]. ‘

Interrupts

After any Xfer, regardless of the cause, the Mcsa emulator guarantces that at least one
"uscful” instruction will be exccuted. "Useful” means an instruction which is not a NOOP,
In Mecsa 3.0, no padding instructions werc nccessary and thus every instruction was
considered "uscful". In Mesa 4.0 this is no longer true, and this guarantee is nceded to
preserve certain propertics within trap handlers (sce below).

Trap Handlers and Parameters [7]

Mecsa 4.0 trap handlers obtain their arguments by mcans of the RR and WR instructions,
Four internal registers have been assigned for trap paramcters:

XTSreg: holds Xfer trap state (sce [8]).
XTPreg: holds Xfer trap paramecters (see [8]).
ATPreg: holds allocation trap parameter,
OTPreg: holds paramcters for all other traps.

Thus, Xfer traps usc XTSrcg and XTPreg, allocation traps use ATPreg, and code-swapped-
out and unbound procedurc traps usc OTPreg.

An additional constraint on trap handlers is that they cannot assume that intcrrupts have
been disabled by the microcode (this was true for some trap handlers in Mcsa 3.0).
However, the microcode continucs to guarantee that onc instruction following a trap will be

Mesa 4.0 Microcode Update 8

cxccuted before any interrupts arce taken. Therefore, if an IWDC instruction is the first
instruction of a trap handler, no interrupts will occur before the trap handler has had the
opportunity to obtain its paramcter(s).

As a result of these changes, the a byte interpretations of RR and WR have been redefined.
The new meanings are:

RR WR

R

wbC wDC

XTSreg XTSreg

XTPreg ——-

ATPreg -

OTPreg —-==

clock --- (see below)
code-base -

NOOBWN =

The clock value returned by RR6 is the low-order 16 bits of the Alto clock, regardless of the
model. Thus the format of this value will be different on the Alto I and Alto IL

Stack overflow and underflow are reported by the same trap mechanism uscd in Mesa 3.0,
but may not occur immediately after the instruction that caused the stack error. However,
the trap will occur before or during the next instruction that cither manipulates the stack or
terminates a straight-line cxecution sequence.

AV, SD, and GFT

The addresses of these tables were stored in internal registers by the Mcsa 3.0 emulator and
could be accessed and modificd by RR and WR. In Mecsa 4.0, fixed locations have been
cstablished for cach of these tables, as follows:

AV 1000B

SD 1060B

GFT 1400B
References

[1] Thacker, Chuck. OIS Processor Principles of Operation. Version 2.0, April 9, 1977.

[2] Levin, Roy. Comparison of Old and New Alto/Mesa Microcode. November 4, 1977,
Filed on [Maxc]<Levin>UCodcComparison.bravo.

[3] Levin, Roy. Extensions to Alto/Mesa Microcode. November 7, 1977. Filed on
[Maxc]<Levin>UCodcExtensions.bravo.

[4] Levin, Roy. Mesa/Nova Interface, November 15, 1977. Filed on
[Maxc] <Levin>MecsaNovalnterface.bravo.

[5] Levin, Roy. Incompatibilitics in Alto/Mesa microcode, version 24. November 23,
1977. Filed on [Maxc]<lLevindIncompatibilitics24.bravo.

[6] Levin, Roy. Extensions to Alto/Mesa Microcode for version 26. Deccember 5, 1977.
Filed on [Maxc]<Levin> UCodeExtensions26.bravo,

Mesa 4.0 Microcode Update 9

[7 Wick, John. Mesa 4.0 microcode (loose ends). March 14, 1978. Filed on
[Maxc] < Wick>MICRO40.bravo. '

[8] Levin, Roy. A Mecchanism for Monitoring Transfers of Control in (Alto) Mesa.
March 29, 1978. - Filed on [Ivy}<levin>Mcsa40>Xfer'Trap.bravo.

Distribution
Mcsa Users
Mcsa Group

c: Belleville
Charnley
Lampson
Thacker

Inter- Office Memorandum

To Mcsa Users Date May 3i, 1978
From Barbara Koalkin Location Palo Alto

Subject Mcsa 4.0 Debugger Update Organization SDD/SD

XEROX

Filed on: [IRIS] <MESA>DOC> DEBUGGER40.BRAVO

This releasc of the Mesa debugger introduces many changes of interest and importance to all
Mesa programmers. The purpose of this memo is to make you awarc of the changes that
have taken place. More complete explanations may be found in the Mesa Debugger
Documentation.

Interpreter

The major addition to the Mesa 4.0 debugger is an interpreter that handles a subsct of the
Mecsa language; it is useful for common operations such as assignments, dercferencing,
indcxing, field access, addressing, and simple type conversion. It is a powerful extension to
the current debugger command language, as it allows you to more closely specify your
variables while dcbugging, thus giving you more complete information with fewer
keystrokes. A subsct of the Mcsa language has been specificd as being acceptable to the
interpreter (a copy of the grammar is attached to this memo),

Statement Syntax

Typing space (sP) to the command processor enables interpreting mode. At this point the
dcbugger is rcady to interpret any cxpression that is valid in the (dcbugger) grammar.

Multiple statcments are scparated by semicolons; the last statement on a line should be
followed by a carriage return (CR). If the statement is a simple expression (ie., not an
assignment), the result is displayed after cvaluation.

For cxample, to perform an assignment and print the result in onc command, you would
type foo « exp; foo.

Loopholes

A more concisc LOOPHOLE notation has been introduced to make it casy to display arbitrary
data in any format. The character "%" is uscd to denotc LOOPHOLE[exp, type], with the
cxpression on the lcft of the %, and the type on the right.

For cxample, the cxpression foo % short red Foo mcans LOOPHOLE the typc of the variable
foo L0 bc a short red Foo and display its value.

Mesa 4.0 Dchugger Update 2

Subscripting

There arc two types of interval notation acceptable to the interpreter. The notation [a. .
b] mecans start at index a and end at index b. The notation [a ! b] mecans start at index a
and end at index (a-b-1).

For cxample, the expressions MEMORY[4 . . 7] and MEMORY[4 ! 4] both display the octal
contents of memory locations 4 through 7. Note that the interval notation is only valid for
display purposcs, and therefore is not allowed as a LeftSide or ecmbedded inside other
expressions.

Module Qualification

To improve the performance of the interpreter, the $ notation has been introduced to
distinguish between module and record qualification. The character $ indicates that the
name on the left is a module, in which to look up the identifier or TYPE on the right. If a
module cannot be found, it uscs the name as a file (usually a definitions file). A valid octal
frame address is also accepted as the left argument of $.

For cxample, FSP$TheHeap means look in the module FSP to find the value of the variable
TheHeap. In dealing with variant rccords, be sure to specify the variant part of the record
before the record name itself (ic., foo % short red FooDefs$Foo, not foo % FooDefssshort
red Foo). ’

Type Expressions

The notation "@ type" is used to construct a POINTER TO type. This notation is used for
constructing types in LOOPHOLEs (ic., @foo will give you the type POINTER TO foo).

Examples
Some of the old commands may now be simplificd as follows:

Interpret Array [array,index,n] becomes array[index ! n]
Interpret Call [proc] becomes proc[parami, ..., paramN]
Interpret Dereference [ptr] becomes ptr

Interpret Expression [exp] bccomes exp

Interpret Pointer [address,type] bccomes addressu@typet
Interpret SIze [var] becomes Size[type]

Interpret STring [string,index,n] becomes string[index ! n]
Interpret @ [var] becomes @var

Display Variable [var] becomes var

Octal Read [address,n] beccomes MEMORY[address ! n]

Octal Write [address,rhs] becomes MEMORY[address] « rhs.

Herc arc somec sample cxpressions which combine scveral of the rules into uscful
combinations:

If you werc intcrested in sccing which procedurc was associated with the third keyword of
thc menu belonging to a particular window called myWindow, you would type:

myWindow.menu.array[3] .proc

Mesa 4.0 Dcbugger Update 3

which might give you the following output:

CreateWindow {PROCEDURE in WEWindows).

If you wanted to look at onc of your procedure descriptors, you might type:
4601 B»@procedure ControlDefs$Controllinkt
which might produce the following output:

ControlLink[procedure[gfi: 23B, ep: 0, tag: procedure]].

The basic arithmetic operations are provided by the interpreter (with the same precedence
rules as followed by the Mesa compiler). .

3+ MoD 2 ; (3+4) MmoD 2
would produce the following output:

3
1.

Radix conversion betwecn octal and decimal can be forced using the loophole construct; for
example, -exp%CARDINAL will force octal output and exp%INTEGER will force decimal.

A typical scquence of expressions one might use to initialize a record containing an array of
Foos and display some of them would be:

rec.array « DESCRIPTOR[FSP$AllocateHeapNode[n*size[FooDefs$Foo]], n];
InitArray[rec.array] ; rec.arrayf first..last] .

Process Commands

The debugger has added a set of commands for use with the new process capabilities of the
language and the system. Display of thc new data types is as follows: condition variables
and monitor locks are displayed in octal; a proccess is displayed as PROCESS [octal number].
In all of the process commands, the message "! is an invalid ProcessHandle" or "l
not a process"” appcars if the process is invalid.

Set Process Context process

sets the current process context to be process and scts the corresponding frame context for
symbol lookup to be the frame associated with process. Upon cntering the debugger for the
first time, the process context is sct to the currently running process. Note that cither a
variable of typc PROCESS (rcturned as the result of a FORK) or an octal ProcessHandle is
acceptable as input to this command. Note also that when you sct the octal context or
modulc context, the process context is set to NiL; however, it is restored when you reset the
context, :

Display Process process

is a specialized version of Display Variable that displays interesting things about a
process. This command shows you the ProcessHandle and the frame associated with process,
and whether the process is waiting on a monitor or a condition variable (waiting ML or
waiting CV). 'Then you are prompted with a ">" and cnter process subcommand mode. A
response of N displays the next process in the array of psbs; R displays the root frame of the

Mesa 4.0 Dcbugger Update 4

process; S displays the source text; P displays the priority of the process; and Q or DEL
terminates the display and returns you to the command processor. A variable of type
PROCESS (rcturncd as the result of a FORK) or an octal ProcessHandle is acceptable as input to
this command (note that process is an interpreted cxpression).

Display Queue id

displays all the processcs waiting on the queue associated with id. For each process, you
enter subcommand mode. The scmantics of the subcommands remain the same as in
Display Process, with the cxception of N, which in this casc follows the link in the
process. This command is prepared to accept cither a condition variable, a monitor lock, a
monitored record, a monitored program, or an octal pointer (as in a pointer to the
ReadyList). Note that id is an interpreted expression; if id is simply an octal number, you
arc asked whether it is a condition variable in order for the debugger to know where to find
the head of the qucue (i.c.,, Display Queue: 175034B, condition variable? [Y or N]).

List Processes [confirm]

lists all processes by telling you the ProcessHandle and its frame. If you wish to see more
information about a particular process use the Display Process command.

Conditional Breakpoints, Multiple Procceds, and new Breakpoint Syntax

The Mcsa 4.0 debugger has extended the former sct of breakpomt commands to include the
capability to set conditional breakpoints.

The syntax for all of the Mesa 3.0 breakpoint commands remains basically the same with the
following cxtension: if you type a sp after the procedure or module name you reccive a
prompt for the condition; if you type a CR it terminates the command input (in the case of
entry/cxit breaks) or just prompts for the source (in the case of text breaks), ie

Break Procedure: proc{spP), condition: x < 2 (cR), source: IFa =b (CR)
Break Procedure: proc(cr), source: iF a =b (CR).

The three valid formats for a conditional expression are:
variable relation variable - eg., stop when x < y
variable relation number - eg, stop when x >= 10
number - eg., stop the 51b time you reach this breakpoint

These commands accept relations belonging to the set: {<, >, 5 # <5 >=}, correcsponding to:
Iess than, greater than, cqual, not cqual, less than or cqual, greater than or cqual.

This gives us the ability to do multiple proceeds with the same syntax as simplc conditional
breakpoints.

Since the variables arc interpreted cxpressions, they are looked up in the current context.
However, if you arc in a module context and wish to spccify a local variable of the
procedure you arc sctling the brecakpoint in, you may do this by saying:

Mecsa 4.0 Decbugger Update 5

proc.var - ie, use the local variable var defined in proc

You may change the condition on a particular brecakpoint or change a breakpoint from a
conditional to a non-conditional onc or vice-versa simply by sctting the breakpoint again
using the ncw condition,

There has also been a simplification to the breakpoint syntax as follows:

All commands to set breakpoints begin with the key letter B,
cg., Break Procedure instcad of SEt Procedure Break

All commands to sct tracepoints begin with the key letter T,
cg., Trace Procedure instcad of SEt Procedure Trace

"The keyword Program has been replaced by the word Module,
cg., ClLear Module Break instcad of CLear Program Break

All of the breakpoint commands now accept a valid GlobalFrameHandle as input when
prompted for a module name,

New Commands / Changes to Existing Commands
Ki11 session [confirm]

ends your debugging session, cleans up the state as much as possible, and returns to the Alto
Executive. Use this command instcad of shift- Swat or the boot button to leave the dcbugger.

ATtach Symbols [globalframe,'l'ilename]

attaches the globalframe to filename., This is useful for allowing you to bring in additional
symbols for debugging purposes not initially anticipated.

ATtach Image [filename]

specifies the filename to use as an image file when the debugger has been bootloaded. It is
uscful when the user corc image has been clobbered. The default extension for filename is
".image".

Display Stack subcommands

The Display Stack command now makcs a distinction between displaying module (global)
and procedurc (local) contexts. The valid subcommands for local contexts remain as in
Mesa 3.0: n,p,v,r,s,q; with the addition of the subcommand >j, n(10) which means jump
down the stack n levels. Note that if n is greater than the number of levels it can advance,
the debugger tells you how far it was able to go. Most of these subcommands apply to
Display Stack on a global context with the exception of j and n. If the debugger cannot
find a symboltable for some frame on the call stack, you get the message "No symbols for
nnnnanB" and enter restricted Display Stack subcommand mode in which only the
subcommands j, n, and q arc allowed. Note that a local context is displayed as the
procedurc name with its local frame, followed by the module name and its global frame; a
global context is displayed as thc module namc and its global frame. For cxample,

Mesa 4.0 Dcebugger Update 6

>Display Stack -- on a global frame _
StreamsA, G: 172674B >?--Options are: p,q,r,s,v.
>Display Stack -- on a local frame
TArrays, L: 1650648 (in TArrays, G:166514B)

>? --Options are: p, v, r, s, q, j, n.

Notice that the convention, proc, L:nnnnnnB (in module, G: nnnnnnB), applies
throughout dcbugger output, wherever procedures and modules are displayed.

CUrrent context

The notion of the current context has been extended to include the current ProcessHandle as
well as the name and corresponding global frame address of the current module and the
current configuration.

Old commands that are gone

Join Ports and Interpret SIze have been taken out of the debugger’'s command language
since their functions have been taken over by the debugger interpreter; Display Binding
path has been removed since the concept of a binding path has gone away.

Additional Capabilities
More breakpoints - local procedures

Due to a change in the lookup algorithm for procedures, it is now possible to set
breakpoints/tracepoints on a local (nested) procedure without being in the context of its
enclosing procedure. However, in order to display a local procedure you must still be in its
enclosing context. '

Validity checking

The decbugger makes a considerable effort to check if the user core image has been smashed
in any way. When it determines that something is wrong, rather than printing out incorrect
information it scts the context to NiL and disables all of the commands that rely on getting
information cither from symbol tables or from the loadstate. The user gets a message that
says "Current context invalid."” or "Command not allowed." whenever this situation
occurs. At this time you might want to attach an image file or some symbols (sce the
ATtach comands) to find out what is wrong.

Installing

To install the debugger with a command linc to the Alto Exccutive, use the "I" switch; use
the "L" switch to load programs with code links (to save space). For cxample, typing
XDebug WindEx/1i installs the dcbugger with the window manager (WINDEX.BCD); typing
XDebug WindEx/i1 installs wiNDEX with code links,

Missing definition files
Instcad of simply rcfusing to give you any information about your variables when you are

missing a dcfinitions filc or have the wrong version of a file, the debugger prints a "?" to
give you an indication that somcthing is missing.

Mesa 4.0 Debugger Update 7

Invalid values

The debugger will print "?[value]" when displaying cnumerated types that appear to be
wrong (ie.,, out of range).

Comments in the typescript file
A comment command has been added to the debugger command language. Use "--" to

ignore type-in until a carriage rcturn (Cr). This is uscful for saving your own notcs along
with your typescript file as well as type-in to be used for window selections,

Current Date and Time

The current date and time is inscrted at the beginning of your typescript file along with the
date and time that your version of the Mesa 4.0 debugger was created.

Default command

Typing the escape character (ESC) to the command processor of the debugger, uses the last
command as the next valid command (i.e., you receive the prompts for the parameters (if
any) for the previously exccuted command).

Confirming commands

When a command requires a [confirm] (CR), the debugger goes into wait- for- DEL mode if
an invalid character is typed.

Extended Features
See the Debugger - Extended Features mémo for further dectails on the following.
IFTP in the debugger

The *FTP command (control1-F) is used to provide file transfer capabilities from within
the debugger using the standard FTP package. Any comments and/or problems regarding
FTP itsclf should be addressed to the Communications Group. If FTP has not been loaded,
trying to use any of the FTP commands will give you the message "-- FTP not installed".

UserProcs

The tUserProc command (control1-U) allows you to load your own dcbugging package
into the dcbugger. If you have only onc uscr proc loaded when you type control-U, it will
be invoked automatically. If you have scveral user procs loaded, typing "?" will give you a
list of thc command names for the user procs that you have loaded. If it can’t find any
procedurcs that have been loaded, you will just get the message, " !No user procs are
currently toaded". :

Window manager
The new window manager WindEx has scveral commands which allow you to sct breakpoints

and tracepoints by sclecting text locations. Confirmation is given by moving the sclection to
the place at which the breakpoint is actually sect.

Mesa 4.0 Dcebugger Update 8

Internal Changes
Debugger Nub

The Mesa 4.0 debugger has been able to realize a significant space reduction by removing its
own internal debugging facilities and replacing them with a nub. Typing tD to the
command processor brings you into the debugger nub with a "//" prompt. The following
limited sct of commands arc available in the nub: Install, Bitmap, New, Start, Proceed,
and Quit. Bitmap[n(10)] rcallocates the bitmap to n pages (the default size is about S0
pages). The nub also provides a minimal signal catcher and interrupt handler as well as
primitive debugging facilities. It is possible to install a diffcrent version of the dcbugger to
usc for debugging the debugger itself (see a member of the Mesa Group if you are interested
in knowing more about how this works).

Savings in space

The global frame size of the Mcsa 4.0 debugger has been reduced by over 50% from the
previous rclease. This has created space for the interpreter and for a larger bitmap. Some
of the savings is duc to the split of the internal and cxternal debugger. Another reason is
due to the way in which the debugger handles strings. By putting the command strings,
command prompts, signal and error messages, and dcbugger FTP commands into a scparate
file (and running this filc through the string compactor), the string segment can be swapped
in only when needed. Additional space was saved by making many of the remaining strings
into local strings so that they do not take up space in the global frame.

Documentation

More complete documentation on the Mesa 4.0 Dcbugger may be found in the Mesa
Debugger Documentation. Bug fixes may be found in the closed change requests maintained
by <SDSupport>. '

Debugger Summary

AScii read [address, n]
ATtach Image [filename]
Symbols [globalframe, filename]
Break Entry [proc, condition}
Module [module, condition, source]
Procedure [proc, condition, source]
Xit [proc, condition]
CAse off [confirm]
on [confirm]
CLear All Breaks [confimm]
Entry traces [module]
Traces [confim]
Xit traces [module}
Break [proc, source]
Entry Break [proc]
Trace [proc]
Module Break [module, source]
Trace [module, source]
Trace [proc, source]
Xit Break [proc]
Trace [proc]
COremap [confirm]
CUrrent context
Display Configuration
Eval- stack
Frame [address]
GlobalFrameTable
Module [module]
Process [process] - n,p,q,r,s
Queue [id]
Stack - j!nlplv’risiq
. Variable [id]
Find variable [id] '
Interpret Array [array, index, n]
Call [proc]
De- reference [ptr]
Expression [exp]
Pointer [address, type]
String [string, index, n)

@ [var]

Version 4.0

Kill session [confimm]

List Breaks [confim]
Configurations [confim]
Processes [confimm]

Traces [confim]
Octal Clear break [globalirame, bytepc]
Read [address, n]
Set break [globalframe, bytepc]
Write [address, rhs]

Proceed [confirm]

Quit [confirm]

Reset context [confim]

SEt Configuration [config]

Module context [module]
Octal context [address]
Process context [process]
Root configuration [config]
STart [address] .
Trace All Entries [module]
Xits [module]
Entry [proc,condition]
Module [module, condition, source]
Procedure [proc, condition, source]
Xit [proc, condition]
Userscreen [confim]
Worry off [confirm]
on [confimm]
- = [comment]

Debugger Interpreter Grammar

Version 4.0
StmtList :t= Stmt | StmtlList; Stmt
AddingOp e

BuiltinCall = LENGTH [LeftSide] | BASE [LeftSide] |
. DESCRIPTOR [Expression] |
DESCRIPTOR [Expression , Expression] |
SiZE [TypeSpecification]

Expression = Sum
ExpressionList = Expression | ExpressionList, Expression |
Factor = - Primary | Primary
Interval = Expression .. Expression | Expression ! Expression
LeftSide ;1= identifier | Literal | MEMORY [Expression] |
LeftSide Qualifier | (Expression) Qualifier |
identifier $ identifier | numericLiteral $ identifier
Literal ;1= numericLiteral | :
stringLiteral | -- all defined outside the grammar
characterliteral
MultiplyingOp w= *| /] MOoD
Primary 1= LeftSide | (Expression) | @ LeftSide | BuiltinCall
Product :t= Factor | Product MultiplyingOp Factor
Qualifier = . identifier | * | % | % TypeSpecification | [ExpressionList]
Stmt ::= Expression | LeftSide « Expression | MEMORY [Interval] |
LeftSide [Interval] | (Expression) [Interval]
Sum ::= Product | Sum AddingOp Product
TypeConstructor = @ TypeSpecification
Typeldentifier ;1= INTEGER | BOOLEAN | CARDINAL |
CHARACTER | STRING | UNSPECIFIED |
identifier | identifier $ identifier |
identifier Typeldentifier
TypeSpecification- =

Typeldentifier | TypeConstructor

Windex Summary

Version 4.0

WHAT WINDEX MOUSE BUTTONS DO:

Scroll Bar Text Area
RED ScrollUp Select/Extend characters
YELLOW Thumb Select/Extend words
BLUE ScrollDown Menu Commands
YELLOW/BLUE NormalizeSelection
MENU COMMANDS:
Create [window] Find [selection, window]
Destroy [window] Set Brk [selection]
Move [window] Clr Brk [selection]

. Grow [window] Set Trc¢ [selection]
Load [selection, window] Set Pos [index, window]
Stuff It [selection, window] Keys On/Off
WHAT MENU MOUSE BUTTONS DO:

RED "Do it" - in this window/ at this spot

BLUE * . Reset to previous state »

WHAT KEYSET BUTTONS DO:

BS DEL ESC CR STUFF IT
DURING TYPE IN:

BS Backspace character

CONTROL-W Backspace word .

FL4 Stuff current selection into default window

Fetch Command Summary

Close connection [confirm]
DElete filename [filename]

DUmp from remote file [dumpfile]
Free pages

List remote file designator {filelist]
LOad from remote file [dumpfile]
Open connection [host, directory]
Quit [confirm]

Retrieve filename [filename]

~ Store filename [filename]

Inter-Office Memorandum

To Distribution Date September 7, 1978
From John Wick Location Palo Alto
Subject Mesa 4.1 update Organization SDD/SD

XEROX

Filed on: [IriskMesa>Doc>Mesad1.bravo

This memo summarizes the changes contained in Mesa 4.1, This is a maintenance relecase, and
contains primarily bug fixes documented clsewhere (by SDSupport). There have been no changes
to public interfaces since Mesa 4.0. However, there are a few highlights that are worth pointing out.

In the paragraphs below, numbers in square brackets refer to change requests maintained by
SDSupport.

Microcode

The Mcsa 4.1 compiler now generates the BLTC instruction. This means that 4.1 BCps are not
backward compatible with 4.0; that is, the output of the 4.1 compiler will not run with 4.0
microcode. (However, 4.0 BCbs will run with 4.1 microcode, so there is no need to rccompile.)
Note that all Mcsa 4.1 image files require 4.1 microcode. [4.0.148] :

Users are strongly encouraged to update to the 4.1 microcode, as there is a rather nasty bug in the
40 signed compare instructions, [4.0.167]

Compiler

There is onc change in the secmantics of relative pointers. To more closcly parallel array
subscripting, a relocated relative pointer is now automatically dereferenced. 1f b is a base pointer
and p a rclative pointer to Foo, the construct H[p] is now of type oo instead of type POINTER TO
Foo. (Thc compiler will point out all the constructs where an @ opcrator is nceded or where an
should be removed.) [4.0.273]

The constructs FIRST and LAST now apply to (LONG) INTEGERs, CARDINALs, and CHARACTERs; they
yicld the minimum and maximum valucs, respectively. For example, LAST[LONG INTEGER] has the

valuc 2147483647 (2 -1) these constructs should be used in place of MaxLonglnteger and the
like. [4.1.322]

Binder

The binder now cnforces quad-word code alignment. This will affect only systems running on the
DO, although Alto/Mcsa uscrs may notice a very small increase in the size of packed code scgments,

Mesa 4.1 Update 2

The binder now pauscs when warnings are detected (under control of the /p- switch),

Dcbugger

The decbugger has been updated to support Pilot on the D0. Alto users are unaffected by these
extensions,

The string parameter passed to CallDebugger is now printed by the debugger; a 4.1 system (Mesa
or BasicMesa) is required to usc this feature. [4.0.26, 4.0.301]

Distribution:
Mcsa Users
Mesa Group

Inter-Office Memorandum

To Mcsa Users Date Deccember 5, 1978
From J. Sandman Location Palo Alto
Subject Performance Mecasurement Tool Organization SDD/SS/DE

XEROX

Filed on: [IRIS)KMesa>Doc>PerformanceTool.bravo .press

A tool for the performance measurement of Mesa programs is described below. It allows users to
identify places in their programs and then collect timing and frequency statistics of program
cxccution between these places. The system is implemented as a sct of commands that can be
exccuted from the Mesa Dcbugger, plus a routine that intercepts all conditional breakpoints and
collects statistics about them. Existing Dcbugger commands are used to specify what points are to
be monitored, and additional commands arec provided for controlling the mecasurements and
outputting the results. Both Alto/Mesa programs as well as Pilot programs may usc this
mceasurement tool,

Concepts

A node is defined to be a place in a program where a breakpoint can be set by the Mesa Debugger.
In fact, nodes arec implemented via conditional breakpoints, so that while mcasurcments are turned
on, the functioning of all conditiorial breakpoints is different. In particular, conditional breakpoints
behave as if they were never encountered or as if the stated condition is tested but is always found
to be FALSE. (Also the count is not decrementcd for multiple proceed conditional breakpoints).

A leg is defined by a pair of nodes, one called the from node and the other the ‘o node. A leg is
the code executed between these nodes. Interesting items measured about a leg include the number
of times this leg was cxccuted and the time required to cxccute the leg.

Facilitics are also provided for associating a histogram with any node or leg, thereby providing more
detailed distribution information about the entry than is provided by counts, sums, and averages.

Since processor time or task time is not available on the Alto or the DO, the measure of computing
is simply the elapsed time from the time the from node is exccuted to the time the fo node is
cxccuted.

The concept of nodes and legs is borrowed from the Diamond ETM module. This tool was first
written by Paul Jalics and transferred to the Mesa Group.

Performance Measurement Tool 2

Terminology
Node Table

A table maintained by the mecasurcment module containing information about cach node. A node
for cach conditional breakpoint is cntered into this table by the Collect nodes command or by
the mecasurement module when it cncounters a conditional breakpoint that is not alrcady in the
table, The nodc table has 20 cntrics.

NodelD

The index of a node in the node table. The NodelD for a particular conditional breakpoint does not
change during a measurcment scssion and is used in commands to identify a particular node.

Node pair

A pair of nodes defining a Leg. The syntax is N1-N2, where N1 and N2 arc both NodelDs. The
character "*" may be usced as a wildcard node designator in a Node pair. For example, the pair *-
* designates all possible pairs and 1-* dcsighates all pairs with node 1 as the from node.

Leg Table

A table maintaincd by the mecasurement module containing various information about cach leg.
Legs are entered into this table by thc command Add Legs or by the measurement module when it
encounters a new leg and automatic inscrtion is enabled. The leg table has 41 entries, one of which
is reserved.

LeglD

The index of a leg in the leg table. The LeglD for a particular conditional breakpoint docs not
change during a mcasurement session and is used in commands to identify a particular leg.

Histogram

An optional table that may be associated with either a node or leg that rccords the distribution of
the value of the node or leg by incrementing counters in a number of buckets. 'The distribution
may be cither simple or logarithmic. In a simple distribuiton, a base may be specified which will be
used as the offset for the first bucket. In a logarithmic distribution, the buckets arc indexed by the
number of leading binary zeros in the value. A scale is usced to adjust the value for an optimal fit
into the number of buckets. There is a storage pool of 256 words that is sharcd among all
histograms to hold buckets and histogram information.

Node Histogram

A histogram associated with a node. The valuc of the node is the first variable specified in the

conditional breakpoint that determines the node. (Sce Scction 3 of Mesa Debugger Documentation.)

The valuc is treated as a 16 bit unsigned quantity. For a simple nodc histogram, the value is

adjusted by subtracting the base (if any) and dividing by the scale factor; the resulting quotient is
recorded. A logarithmic node histogram has a maximum of 16 buckets because the value is a 16 bit
quantity.

Performance Measurement Tool 3

Leg Histogram

A histogram associated with a leg. The value of the leg is the 32 bit time of the leg in units of
ticks. The valuc is adjusted by shifting the valuc to the right by the scale. A logarithmic leg
histogram has a maximum of 32 buckets because the value is a 32 bit quantity,

Components

PerfTool is the componcent of the measurement system that lives with user programs built on top of
Alto/Mcsa. This configuration contains two modules: PerfMonitor and PerfBreakHandler.
PerfMonitor initializes the PerfTool. PerfBreakHandler contains a breakpoint handler that
intercepts all conditional breakpoints and accumulates statistical information about nodes and legs.
PerfTool must be loaded and started in the system it will monitor. This may be done by including
PerfTool in the clicnt configuration whose control module starts PerfDefs.PerfMonitor or by
exccuting the following command to the Alto Exccutive:

>Mesa PerfTool Client

PilotPerfTool is the component of the measurement system that lives with user programs built on
top of Pilot. This configuration contains two modules: PilotPerfMonitor and
PilotPerfBreakHandler. These modules perform the same functions as PerfMonitor and
PerfBreakHandler, respectively. Since there is no loader in Pilot 2.0, PilotPerfTool must be
included in the client configuration whosc control module starts PerfDefs.PilotPerfMonitor. In
addition, the code for PilotPerfBreakHandler must be made resident. Use the StartPilot command
ResidentCodeModule by cxccuting the following command to the Alto Executive:

>StartPilot ResidentCodeModule["PilotPerfTool>PilotPerfBreakHandler"]
Build["Client"]

PerfPackage is the component that lives as a userproc in the Mesa Debugger. It implements the
basic commands required to manipulatc the node table and the lcg table and to output
measurement results. PerfPackage must be loaded into the Debugger before its commands can be
cxccuted. The casicst way is to load it when installing the Dcbugger by exccuting the following
command to the Alto Exccutive:

>XDebug WindEx/1 PerfPackage/1i

The command interpreter for the PerfPackage is invoked by calling the uscrproc PerfMonitor.
The uscrproc dispatcher is invoked by the tUserProc command (control-U). If only one
userproc is loaded, it is automatically called, otherwise some unique prefix must be typed when the
dispatcher prompts for a procedure name. Sce the Mesa Debugger Documentation: Debugger -
Extended IFeatures for details,

Operation

When the break handler intcrcepts a breakpoint, it checks to sce if the breakpoint is a conditional
breakpoint. 1 s0, it finds the node corresponding to the breakpoint, and increments its counters
and processes its histogram if onc cxists. If tracking of legs is cnabled, the lcg table is scarched for
the legs of which this node is a part. Otherwisc, the break point is resumed.

Performance Measurement Tool 4

In the simple casc, a leg is tracked as follows. ‘The break handler intercepts a conditional
breakpoint that is the from node of the leg (from) and somc time later it intercepts ‘a conditional
breakpoint that is the o nodc of the leg (to). At this point, the leg’s time is recorded, its count is
incremented, and its histogram (if any) is proccssed.

This simple modecl of tracking a leg is complicated by recursion, signals, and multiplc processes.
With rccursion, from may be cncountered scveral times before to is encountered, With signals, a
process may be unwound after it encounters from but before it cncounters to. With multiple
processes, one process may cncounter from and then another immediately encounter to.
To deal with the complication of multiple processes, there is the concept of the tracked process. If
the tracked process is not NiL then only those conditional breakpoints that are cncountered by the
tracked process arc trcated as nodes. All others are simply resumed as if they did not exist. If the
tracked process is NiL, then all processes are tracked.

To decal with these complications, there is a leg owner. A leg owner is the process that last
encountered from. When to is encountered and the current process is its owner, then the leg is
recorded and the leg owner is cleared. If the current process is not the owner, the leg is ignored.
As a result of ignoring legs, from and to may be counted more times than the leg between them is
counted.

Normally, when a node is cncountered all legs of which that node is a part. arc tracked.
Alternatively only the leg dcfined by the last node encountered and the current node is tracked.
Commands

The command interpreter completes commands like the Dcbugger command interpreter. The
capitalized characters are all that must be typed to specify a command.

General Commands
Collect nodes

cnters conditional breakpoints as nodes into the Node Table.
Initialize tables [Confirm]

completely reinitializes all tables and counters. Both the node table and the leg table and all
histograms are cleared.

List Tables

displays all the summary statistics gathcred so far and the complete contents of the node
table and the leg table. May be aborted by typing +DEL.

Monitor on

turns on performance monitoring.” All conditional breakpoints will now be monitored.

Performance Measurement Tool 5

Monitor off

turns off performance monitoring. All conditional breakpoints will now bchave like normal
conditional -breakpoints.

Quit [Confirm]
cxits the PerfPackage and rcturns to the Mesa Decbugger.

Zero tables [Confirm]
zeros out all counts and sums from the tables (including the total time spent measuring) but
will lcaves all other information in the tables unchanged. This command is uscful for
prescrving the measurement environment but just zeroing out the counts and sums collected
so far.

Leg and Node Commands

Add Legs [Node pair, Node pair, ...]

adds the legs specified by the node pairs to the leg table. If a designated leg entry is -
alrcady in the leg table, the leg is not affected.

Delete Legs [LegID, LegID, ...]
. deletes the speéiﬁed legs from the leg table,
List Leg table

displays the contents of the leg table. A LegID followed by an asterisk has a histogram
associated with it. May be aborted by typing *DEL,

List Node table

displays the contents of the node table. A NodelD followed by an astcrisk has a histogram
associated with it. May be aborted by typing *DEL,

Mode Control Commands

Add Immediate successors
cnables the PerfBreakHandler to add legs that it encounters that arec not in the table,
These legs may be deleted if there is no room in the leg table when legs are being added
by the Add Legs command.

Add No legs

preveats the PerfBreakHandler from adding Icgs that arc not in the table. This is the
dcfault mode for adding automatic lcgs.

Performance Measurement Tool 6

Track

Track

Track

Track

Track

A1l Legs

tells the PerfBreakHandler to track all legs in the table. This is the default mode for
tracking legs

A1l Processes

tells the PerfBreakHandler to track all processes. All processes are tracked in the default
case. ,

Immediate successors

tells the PerfBreakHandler to track only the leg defined by the last node encountered and
thc current node.

No Tlegs

tells the Per_fBreakHandler to disable tracking of legs.

Process [process].

tells the PerfBreakHandler to track only those legs that are exccuted by the specified
proccss. Nodes cncountercd by other processes will not be recorded. An octal

ProcessHandle as obtained from the Dcbugger's List Processes command is
acceptable as input to this command. A carriage return will sct the process to all processes.

Histogram Cominands

Add Histogram for Leg [LegID]

adds a histogram and associates it with the specified leg. The command prompts for
number of buckets, type (simple or logarithmic) scale, and base if the typce is simple. Note
that since scaling of a leg histogram is done by shifting instcad of dividing, the scale is
entered as a power of two.

Add Histogram for Node [NodelID]

adds a histogram and associates it with the specified node., The command prompts for
number of buckets, type (simple or logarithmic), scale, and base if the type is simple.

Delete Histogram for Leg [LegID]

dcletes the histogram associated with the specified leg.

Delete Histogram for Node [NodelID]

deletes the histogram associated with the specified: node.

List Histogram for Leg [LegID]

displays the histogram associated with the specified leg. May be aborted by typing +DEL.

Performance Mecasurement Tool ‘ 7

List Histogram for Node [NodeID]

displays the histogram associated with the specified node. May be aborted by typing +DEL.

Command Tree

This is the command tree structure for the PerfPackage. It is formatted like the command tree for
the Mesa Debugger (scc Mesa Debugger Documentation).

Add Histogram for Node

Leg
Immediate successors
Legs
No legs

Collect nodes

Delete Histogram for Leg
Node
Legs

Initialize tables

List Histogram for Leg
Node
Leg table
Node table
Tables

Monitor on
off

Quit

Track A11 Legs
Processes
Immediate successors
No legs
Process

Zero tables

Limitations

1. Time Basc: The time base available on the Alto is a 26-bit counter, where the basic unit of time
is 38 microseconds. Thus the counter turns over cvery 40 minutes, and no individual time greater
than 40 minutes is mcaningful on the Alto. Total times are 32-bit numbers and will overflow after
340 minutes,

Performance Measurement Tool 8

2. Overhead Calculation: Duc to implementation restrictions and timer granularity, some of the
overhead of processing a breakpoint is incorrectly assigned to the client program instcad of the
PerfTool. As a result, leg times will be about ten microscconds high for cach node that was
cnountered while processing that leg. Elapsed time is similarily affected.

3. Counter Sizes: In a long mecasurcment scssion, the counters on nodes, leg and histograms may
overflow. Node and leg counters are 22-bit numbers, while histogram counters are 16-bit numbers.
If a node or leg counter overflows, a "*" follows the count when the ficld is listed.

4. Recursive Procedurc Calls, UNWiNDs, multiple processes: As mentioned in the section on
opcration, the above interfer with the simple start to end concept of a leg. With recursion and
multiple processes, the start node of a leg may be tripped scveral times before the end node is
tripped. With unwinding, the start node of a leg may be tripped and the -end node never reached.
If any of these cause a leg to be ignored, the referenced field in the Leg Table has a "~" following
it when the table is listed.

5. Table Sizes: The node table contains 20 entrics. (Notc that the PerfBreakHandler
automatically extends the number of conditional breakpoints that can be sct in the debugger from 5
to 20.) The leg table currently has 40 entries. Note that this number is small when compared to the
20*20 possible legs. For this reason, there cxist a number of commands to give the uscr control over
exactly what legs are in the table.

6. Mcmory Requirements: The PerfTool requires scven pages of resident memory; three for
PerfBreakHandler’s code, and four for PerfTool’s frames. This may affect the performance of
some systems that use a lot of memory, espccially on the Alto.

1. PerfBreakHandler acts like a worry mode breakpoint and as a consequence, you may find
you cannot Quit from the Dcbugger after your session. Use the Ki11 Debugger command instead.
Getting Started

Outlined below are the steps required for using the mcasurement tool.

1. obtain the bed’s for PerfTool and PerfPackage.

2. install the PerfPackage in the Mesa Dcbugger (version 4.1 or later).

3. start your program exccuting with the PerfTool included.

4. cnter the Decbugger and sct conditional breakpoints as desired.

6. turn mcasurcments on via thc Monitor on command,

7. manipulate the leg table as desired.

8. procced with program cxecution.

9. return to the debugger via control-swat or an unconditional breakpoint.

10. display results with the List commands.

Performance Measurement Tool

Sample Session

The following annotated listing of a DEBUG.TYPESCRIPT session should give a fair idea of the
usc of thc measurcment tool.

Alto/Mesa Debugger 4.1 of 6-Sep-78 18:47
13-Nov-78 11:49

>SEt Module context: Segments
>Interpret Call Procedure: AllocatePages 0: 160
(anon)=26000B+ -- Allocate most of memory to cause swapping for example

>SEt Module context: Swapper

>Break Entry Procedure: AllocVM, Condition: AllocVM.pages = 1
-- a histogram will be attached to this breakpoint and the local variable pages will be counted.
>Break Xit Procedure: AllocVM, Condition: 1

>Break Entry Procedure: MakeSwappedIn, Condition: 1

>Break Xit Procedure: MakeSwappedIn, Condition: 1

>userProc [confirm]

Proc: PerfMonitor
@Monitor on : -- Now conditional breakpoints activate
@Collect nodes
@List Node table

------ NODE TABLE CONTENTS----=-=-----

Node Global Program Number of Config Module Proc Source
Id Frame Counter References Name Name Name Line
0 173314 3314 0 Mesa Swapper AllocVM Q@Entry
1 173314 3651 .0 Mesa Swapper AllocVM @Exit
2 173314 2251 0 Mesa Swapper TryCodeS @Entry
3 173314 2775 0 Mesa Swapper TryCodeS GExit

@Add Legs: 0-1,2-3
@List Leg table
——————— LEG TABLE CONTENTS - =-=~=>== =~
Leg From To # of Times Total Time Average Time % of
Id Node Node Referenced: sec.msec:usec sec.msec:usec Time

0 0-> 1 0

1 2 -> 3 0 0 0 .00
@Add Histogram for Node: 0 '
Type of Histogram: Simple
Number of Buckets [1..2467:12
Scale Factor [1..65,5635]:1
Base: 0
@Add Histogram for Leg: O
Type of Histogram: Logarithmic
Number of Buckets [1..32]:12
Scale Factor (2tn) [0..317:0
@Add Histogram for Leg: 1
Type of Histogram: Simple
Number of Buckets [1,.2047]:12
Scale Factor (2tn) [0..31]:5
Base: 32
@Quit [Confirm]
>Proceed [confirm]
>userProc [confirm]
Proc: PerfMonitor
@QList Tables

Performance Measurcement Tool

Total Elapsed Time of Measurements = 16.567:544
Elapsed Time less PerfMonitor Overhead = 14.884:980
Total Overhead of PerfMonitor Breaks = 1.682:564
Total number of Perf Breaks handled = 382
Average Overhead per Perf Break = 4:404
% of Total Time spent in PerfMonitor = 10.15
------ NODE TABLE CONTENTS----~-~~-~-- =~
Node Global Program Number of Config Module Proc Source
Id Frame Counter References Name Name Name Line
0* 173314 3314 102 Mesa Swapper AllocVM -@Entry
1 173314 3651 102 Mesa Swapper AllocVM QExit
2 173314 2251 89 Mesa Swapper TryCodeS @Entry
3 173314 2775 89 Mesa Swapper TryCodeS Q@Exit

------- L EG TABLE CONTENTS-"~---~-~-=~ -
Leg From To # of Times Total Time Average Time % of
Id Node Node Referenced sec.msec:usec sec.msec:usec Time

o 0 -> 1 ' 102 4.328:390 42:435 26.12
1* 2 -> 3 89 605:530 6:803 3.65
@List Histogram for Node: 0
Number of References 102
Sum of Values 432
Average Value 4
Scale Factor 1
Base 0
Value Count
0 0
1 3
2 11
3 7
4 19
5 62
6 0
7 0
8 0
9 0
10 0
11 0
Overflow 0
@List Histogram for Leg: 0
Number of References 102
Sum of Values 113,905
Average Value 1,116
Scale Factor (2tn) 0
Value Count
1 0.
2 0
4 0
8 0
16 1
32 0
64 6
128 6

Performance Measurement Tool

256 0

512 0

1,024 89

2,048 0

Overflow 0

@List Histogram for Leg: 1

Number of References 89
Sum of Values 15,935
Average Value 179
Scale Factor (2tn) 5
Base 32

Value Count

Underflow 17

32 o2

64 14

96 7

128 4

160 2

192 4

224 6

256 6

288 20

320 2

352 3

384 2

Overflow 0

@Quit [Confirm]
>Ki11 session [confirm]

XEROX

Inter-Office Memorandum

To Mcsa Users . Date Dccember 15, 1978
From J. Sandman Location Palo Alto
Subject Control Transfer Counting Tool Organization SDD/SS/DE

Filed on: [IRIS]<AlphaMesa>Doc>XferCounter.bravo .press D R A FT

A tool for studying behavior of Mesa programs is described below. It counts the number of control
transfers (xfers) to a module and records the time spent cxccuting in a module. An xfer is the
general control transfer mechanism in Mesa. The following are all xfers: procedure call, return
from a procedure, traps, and process switches. '

. The system is implemented as a set of commands that can be exccuted from the Mesa Debugger, a

routine that intercepts all xfers and collects statistics about them, plus a routinc that intercepts
conditional breakpoints for turning the xfer monitoring on and off. Existing Decbugger commands
are used to spccify where xfer monitoring is enabled, and additional commands are provided. for
controlling the counting of xfers and outputting the results. Both Alto/Mesa programs as well as
Pilot programs may use this tool.

This tool is intended to provide a global view of the behavior of a system. With this tool, a user
can identify modules that warrant closer study will other tools such as the Performance Tool.

Components

XferCounter is the component of the tool that lives with user programs built on top of Alto/Mesa.
This configuration contains onc module: Counter. It contains the xfer trap handler -and a
breakpoint handler. XferCounter must be loaded and started in the system it will monitor. This
may be done by including XferCounter in the client configuration whose control module starts
XferCountDefs.Counter or by cxccuting the following command to the Alto Exccutive:

>Mesa XferCounter Client

PilotXferCounter is the component of the measurcment system that lives with user programs built
on top of Pilot. This configuration contains onc module: PilotCounter, which performs the same
functions as Counter. Since there is no loader in Pilot 2.0, PilotXferCounter must be included in
the client configuration whose control module starts XferCountDefs.PilotCounter. In addition, the
code for PilotCounter must bc made resident. Use the StartPilot command
ResidentCodeModule by cxccuting the following command to thc Alto Exccutive;

Xfer Counting Tool 2

>StartPilot ResidentCodeModule["PilotXferCounter>PilotCounter”]
Build["Client"]

XferCountPackage is thc component that lives as a uscrproc in the Mesa Debugger. It implements
the basic commands required to cnable xfer monitoring and to output mcasurcment results,
XferCountPackage must be loaded into the Dcbugger before its commands can be cxecuted. The
casicst way is to load it when installing the Debugger by exccutmg the following command to the
Alto Exccutive:

>XDebug WindEx/1 XferCountPackage/1i

The command interpreter for the XferCountPackage is invoked by calling the uscrproc
XferCounter. The uscrproc dispatcher is invoked by the tUserProc command (control-U).
If only onc userproc is loaded, it is automatically called, othcrwise some unique prefix must be
typed when the dispatcher prompts for a procedure name. Seec the Mesa Debugger Documentation:
Debugger - I'xtended Features for details.

Opceration

When xfer monitoring is enabled and a xfer occurs, the xfer trap handler calculates the time since
the last xfer and adds that to the cumulative time for the current module, It then calculates which
module is the dcstination of the xfer and makes that the current module, incrementing its count.
The xfer handler then completes the xfer and the user program resumes execution,

The state of xfer monitoring can be controlled by two methods. The first is by sectting a conditional
breakpoint to be handled by the tool’'s break handler. The sccond is by calling the procedures
XferCountDefs.StartCounting and XferCountDefs.StopCounting.

When the break handler intercepts a breakpoint, it checks to see if the breakpoint is a conditional
breakpoint. If not, the breakpoint handler proceeds to the debugger. If so, the statc of xfer
monitoring is changed and program cxccution is resumed. A condition of 0 turns on xfer
monitoring. A condition of 1 toggles the state of xfer momtormg A condition of 2 turns off xfer
monitoring. Any other condition has no effect.

Since multiple processcs may interfere with cach other, there is the concept of the tracked process.
If the tracked process is not NiL, only those xfers that are encountered by the tracked process are

counted. All others arc simply resumed. If the tracked process is NiL, then all processes are
tracked.

Commands

The command interpreter completes commands” like the Debugger command interpreter. The
capitalized characters arc all that must be typed to specify a command.

General Commands
List Module
displays the statistics for the specified module. The module may be specificd by cither its

global frame table index (gfi), global frame address (g) or its module name if the current
configuration contains the desired module,

Xfer Counting Tool 3

List Sorted by Time

displays all the statistics for cach module in order of decreasing time. May be aborted by
typing tDEL.

List Sorted by Xfers

displays all the statistics for cach module in order of decreasing number of xfers. May be
aborted by typing *DEL.

List Table
displays all the statistics for cach module. May be aborted by typing *DEL.
Monitor on

turns on the tool’s breakpoint handler. All conditional breakpoints will now toggle the
monitoring switch.

Monitor off

turns off the tool’s breakpoint handler. All conditional breakpoints will now bchave like
normal conditional breakpoints.

Quit [Confirm]
exits the XferCountPackage and returns to the Mesa Dcbugger.
Track Al11 Processes

tells the XferCounter to count the xfers of all processes. All processes arc counted in the
default case.

Track -Process [process]
tells the XferCounter to count only thosc xfers that are exccuted by the specified process.
An octal ProcessHandle as obtaincd from the Dcbugger’s List Processes command is
acceptable as input to this command. A carriage return will set the process to all processes.

Zero tables [Confirm]

zeros out all counts and times.

Command Tree

This is the command tree structure for the XferCountPackage. It is formatted like the command
trce for the Mcsa Dcbugger (sec Mesa Debugger Documentation).

List Module
Sorted by Time

Xfer Counting Tool 4

Xfer
Table

Monitor on
of f

Quit

Track A1l Processes
Process

Zero tables

Limitations

1. Exccution Speed: Xfer monitoring slows down the cxccutions of a program since ecxtra
processing is done on every xfer. As a result, interrupt processes will run relatively more
frequently.

2. Idle T.oop Accounting: When no process is running, the Mcsa Emulator runs in its idle loop
waiting for a process to become ready. This idle time is charged to the process that was last
running,.

3. Time Base: The time base available on the Alto is a 26-bit counter, where the basic unit of time
is 38 microscconds. Thus the counter turns over every 40 minutes, and no individual time greater
than 40 minutes is mcaningful on the Alto. Total times are 32-bit numbers and will overflow after
340 minutes.

4, Overhead Calculation: Due to implementation restrictions and timer granularity, some of the
overhcad of processing a xfer is incorrcctly assigned to the client program instcad of the
XferCounter. As a result, times must be interpreted as only a relative mcasure of the time spent in
a module,

5. Counter Sizes: Counts are 32-bit numbers. The maximum total count is 4,294,967,295 xfers.

6. Table Size: The XferCounter’s tables hold the data for the first 256 global frame table slots. If
the global frame table is larger, some xfers may be ignored.

7. Mcmory Requirements: The XferCounter requires seven pages of resident memory; Two for
XferCountBreakHandler’s code, and five for XferCounter's frames and tables. This may affect
the performance of some systems that usc a lot of memory, cspecially on the Alto,

8. XferCounter's brcak handler acts like a worry mode breakpoint and as a consequence, you may
find you cannot Quit from the Debugger after your session. Use the Ki11 Decbugger command
instead.

Getting Started

Outlined below are the steps required for using the measurcment tool.

Xfer Counting Tool

1. obtain the bed’s for XferCounter and XferCountPackage.

2. install the XferCountPackage in the Mesa Dcbugger (version 4.1 or later).

3. start your program cxeccuting with the XferCounter included.

4. enter the Dcbugger and sct conditional breakpoints to enable monitoring as dcsired,
5. turn the break handler on via the Monitor on command.

6. proceced with program exccution.

7. return to the debugger via control-swat or an unconditional breakpoint.

8. display results with the List commands.

Sample Scssion

The following annotated listing of a DEBUG.TYPESCRIPT session should give a fair idea of the
usc of the measurement tool.

Alto/Mesa Debugger 4.1 of 6-Sep-78 18:47
4-Dec-78 11:17

*#** qinterrupt *** ' '
>SEt Module context: Loader -- Count xfers involved in loading a configuration
>Break Entry Procedure: New, Condition: 0 -- Start monitoring when hit this break
>Break Xit Procedure: New, Condition: 2 -- Stop monitoring
>userProc [confirm]

Proc: XferCounter

@Monitor on

@Track Process: 2770 -- Track only the main process. Ignore the keyboard process
@Quit [Confirm]

>Proceed [confirm]

*** interrupt ***

>userProc [confirm]

Proc: XferCounter

@List Table

Total Xfers 5,884

Total Time 950:1562
Gfi Frame Module Name # Xfers % Xfers Time % Time
1B 173760B Resident 4 .06 - 152 .01
3B 173740B DiskIO 335 5,69 311:752 32.81
4B 173314B Swapper : 794 13.49 95:874 10.09
10B 173040B LoaderUtilities 245 4,16 19:380 2.03
118 173024B LoadState 95 1.61 87:020 9.156
12B 173020B LoaderBcdUtilities 973 16.53 69:160 7.27
138 173014B Loader 2,207 37.50 264:556 27.84
21B 172740B NonResident 59 1.00 15:732 1.65
22B 172730B Segments 432 7.34 26:182 2.75
24B 172724B Strings 635 10.79 51:300 5.39
25B 172714B Files 48 .81 4:636 .48
31B 172700B FSP 57 .96 4:408 .46

@List Sorted by Xfers

Xfer Counting Tool

Total Xfers
Total Time

Gfi

11B
21B
318B
258

1B

Frame

1730148
1730208
1733148
1727248
1727308
1737408
1730408
1730248
1727408
1727008
1727148
1737608

@List Sorted
Total Xfers
Total Time

Gfi

Frame

5,884
950:1562
Module Name

LoaderBcdUtilities
Swapper

Strings
Segments

DiskIO
LoaderUtilities
LoadState
NonResident

FSP

Files

Resident

by Time
5,884
950:152
Module Name

Xfers % Xfers '

973 16.53
794 13.49
635 10.79
432 7.34
335 5.69
245 4.16
95 1.61
59 1.00
57 .96
48 .81
4 .06

Xfers % Xfers

Time % Time

318
1B

1737408
1730148
1733148
1730248
1730208
1727248
1727308
1730408
1727408
1727148
1727008
1737608

DiskIO

lLoader

Swapper
LoadState
LoaderBcdUtilities
Strings
Segments
LoaderUtilities
NonResident
Files

FSp

Resident

@Quit [Confirm]
>Kill session [confirm]

335 5.69
2,207 37.50
794 13.49
95 1.61
973 16.53
635 10.79
432 7.34
245 4.16
59 1.00
48 .81
57 .96
4 .06

