
)(EROX

Inter- Office Memorandum

To Mesa Users Date May 31, 1978

From Dave Redell, John Wick Location Palo Alto

Subject Mesa 4.0 Change Summary Organization SDD/SD

Filed on: [IRIS] <MESA) DOC)SUMMARY40.BRAVO

This memo outlines changes made in Mesa since the last release (October 11, 1917).

References

The following documents can be found on [IRIS] <MESA)DOC); all files are in Bravo format.
Hardcopy is available through your support group; in addition, the PRESS files MESA40A,
MESA40B, and MESA40C are a compilation of this material (about 75 pages).

Mesa 4.0 Change Summary. SUMMARY40.BRAVO

Mesa 4.0 Compiler Update. COMPILER40.BRAVO, ARITHMETIC40.BRAVO

Mesa 4.0 Process Update. PROCESS40.8RAVO

Mesa 4.0 Binder Update. BINDER40.BRAVO

Mesa 4.0 System Update. SYSTEM40.BRAVO

Mesa 4.0 Microcode Update. MICROCODE40.8RAVQ

Mesa 4.0 Debugger Update. DEBUGGER40.BRAVO

The section on processes is a preliminary draft of a new chapter of the Ivl esa Language
Manual (which will be sent to the printer shortly); thanks are due to Dave Redell and the
Pilot Functional Specification for contributing much of this material.

The MESA)DOC directory also includes new versions of the Ivlesa System Documcntation and
the Mesa Dcbugger Documentation (the relevant PRESS files are SYSTEM1, SYSTEM2, and
DEBUGGER).

Highlights

The primary emphasis in this release has been on three areas: implementation of features
required by Pilot and Dstar applications for effective use of the new machine architecture
(processes, l1loni tors, long poi n ters, etc.), reduction of overhead in the basic system structures
and improved performance of the Mesa runtime environment (faster microcode, smaller
global rrames, more erficient memory management), and extension of the debugger's
capabi lilies (primarily an interpreter for a subset of the Mesa language).

M csa 4.0 Changc Summary 2

The primary impact of Mesa 4.0 on existing systems is in the area of concurrent
programming.· A brief intoduction to the new process mechanism appears below. It is
intended to present enough information to enable programmers to experiment with the new
features of the language and the runtilne system. However, before attempting to revise or
redesign existing systems to use these facilities, programmers are urged to carefully examine
the material in the ft,;Iesa 4.0 Process Update and the Alesa System Documentation.

Warning: Because Pilot will be available soon, the Alto/Mesa operating system software
has not been revised and redesigned to fully exploit the capabilities of the new process
mechanism. In particular, arbitrary preemptive processes are not supported, and the
restrictions of Mesa 3.0 on processes running at interrupt level still apply.

A Bricf Introduction to Processes in Mesa

Mesa 4.0 introduces three new facilities for concurrent programming:

Processes, which provide the basic framework for concurrent programming.

ft,;ionitors, which provide the fundamental interprocess synchronization facility.

Condition variables, which build upon monitors to provide more flexible forms of
interprocess synchronization.

As compared with the mechanisms provided in earlier releases of Mesa, the new concurrency
facilities are more extensive, and are much more thoroughly integrated into the language.
The purpose of the new facilities is to allow easy use of concurrency as a basic control
structure in Mesa programs. Concurrency can be an important consideration in progam
design, especially when input/output or user interactions may cause unpredictable delays.

Processes

For example, consider an application with a front- end routine providing interactive
composition and editing of input lines:

ReadLine: PROCEDURE [5: STRING] RETURNS [CARDINAL] =
BEGIN
c: CHARACTER;
s.length ... 0;
DO

C ... ReadChar[] ;
IF ControlCharacter[c] THEN DoAction[c)
ELSE AppendChar[5, c) ;
IF C = CR THEN RETURN[s.length] ;
ENOlOOP;

END;

Thus, the call:

n to ReadLine[51 ;

would collcct a line of USCI' typing up to a CR and return it to the caller. Of course, the
caller cannot get anything else accomplished during the Lype- in of the line. If there was
anything else that needed doing. it could be done concurrently with the type- in by forking
to ReadLine instead of calli ng it:

Mesa 4.0 Clwngc SunulUuy 3

p +-- FORK ReadLine[51 ;

<concurrent computation)

n +-- JOIN P;

This would allow the statements labeled <concurrent computation) to proceed in parallel with
user typing. The FORK statement spawns a new process whose result type matches that of
ReadLine. (ReadLine is referred to as the "root procedure" of the new process.)

p: PROCESS RETURNS [CARDINAL];

Later, the results are retrieved by the JOIN statement, which also deletes the spawned process.
Obviously, this must not occur until both processes are ready (Le. have reached the JOIN and
the RETURN, respectively); this rendevous is synchronized automatically by the process
facility.

Note that the types of the arguments and results of ReadLine are always checked at compile
time, whether it is called or forked.

A1ollitors

Further investigation of ReadLine reveals another example of interprocess interaction; the
ReadChar routine it uses inspects an input character buffer, which is filled by an
independent dedicated keyboard process. (Such dedicated processes replace the "h'ard
processes" of earlier releases of Mesa.) To avoid conflict 'over the buffer, appropriate
synchronization is needed. A monitor can be used to insure that neither process will ever
access the buffer while the other has it in a "bad state" (e.g. inconsistent pointers, etc.). The
keyboard monitor might look like:

Keyboard: MONITOR =
BEGIN
buffer: STRING;

ReadChar. PUBLIC ENTRY PROCEDURE RETURNS [c: CHARACTER] =
BEGIN
C +-- <get character from buffer>
END;

PutChar. PUBLIC ENTRY PROCEDURE [c: CHARACTER] =
BEGIN
< put C in buffer>
END;

END.

The keyword MONITOR confers upon the Keyboard module some special properties. The
IllOst fundamental is the presence of entry procedures, identified by the keyword ENTRY.

These procedures have the property that calls on them are mutually exclusive; that is, a new
call cannot commence while any previolls call is in progress. In effect, the monitor module
is made temporarily private to a single process, and any other processes wishing to use it are
delayed until the first process is finished. [n this example, the client's call to ReadChar and
the keyboard process' call to PutChar are guaranteed mutually exclusive access to the buffer.

Condition variables

As long as it finds some characters in the buffer, ReadChar as shown above will work
correctly without conflict over the buffer. If it finds the buffer empty, however, it cannot

lVlcsa 4.0 Change Summary 4

simply loop in the monitor waiting for a character to arr}ve; not only would this be
inefficient, but it would lock out the keyboard process from ever deHvering the desired next
charactcr! What is needed is some way for ReadChar to pause and release the mutual
exclusion temporarily until PutChar has delivered the next character. 'fhis facility is
provided by cOlld ilioll variables. Condi tion variables serve as the basic building blocks out
of which the programmer can fashion whatever generalized synchronization machinery
proves necessary in a given situation. For example, the Keyboard monitor can be modified
to use the WAIT and NOTIFY operations on condition variables as follows:

Keyboard: MONITOR =
BEGIN
buffer: STRING;
buffe rNonEmpty: CONDITION;
ReadChar: PUBLIC ENTRY PROCEDURE RETURNS [c: CHARACTER] =

BEGIN
WHILE < buffer empty> DO

WAIT bufferNonEmpty
ENDLOOP;

C ~ < get character from buffer>
END;

PutChar: PUBLIC ENTRY PROCEDURE [c: CHARACTER] =
BEGIN
< put C in buffer>
NOTIFY bufferNonEmpty;
END;

END.

Note that the WAIT statement is embedded in a WHILE-loop which repeatedly tests for the
desired condition. This is the only recommended usage pallern for the WAIT statement. In
particular, it would have been incorrect to replace the loop above by:

IF <buffer empty> THEN WAIT bufferNonEmpty;
C .. < get character from buffer>

This rule exemplifies a fundamental property of condition variables in Mesa: a condition
variable always corresponds to some Boolean expression describing a desired state of the
monitor data, and suggcsts that any. interested process(es) might do well to reevaluate it. It
does /lot guarantee that the Boolean expression has become true, hence programillers should
never write programs (such as the fragment above) that implicitly assume the truth of the
desired condition upon awakening from a WAIT.

Priorities

The set of existing processes grows and shrinks dynamically as FORKS and JOINS occur. At
any given time, some of the processes are rcady and compete for use of the processor. The
choice of wh ich one to run is done on the basis of priority. I\. process starts life with the
priority of its parent (who executed the FORK), and may change its own priority by calling
SetPriority.

CA UTION: Use of multiple priorities ill the Allo/ A1esa implcmcntation is severely
rcstricted. Any process running at other than the default priority (currently, 1) is forbidden
to use many of the standard runtime support features of the Mesa environment. fn practice,
this means that nO"11- standard priori ties should be used Oil ly for in terrupt handli ng, while all

Mesa 4.0 Change Summary 5

"normal" processing takes place concurrently at the default priority level.

At ore general features

More complex situations will sometimes require more flexible usc of the concurrency
facilities. Such usc involves more complicated rules and syntactic constructs, which are
described in the Iv! esa 4.0 Process Update.

Distribution:
Mesa Users
Mesa Group

XEROX

Inter- Office MClllorandum

To Mesa Users Date May 31, 1978

From Ed Satterthwaite Location Palo Alto

Subject Mesa 4.0 Compiler Update Organization SDD/SD

Filed on: [IRIS] < MESA) DOC) COMPILER40.BRAVO

This memo describes changes to the Mesa language and compiler that have been made since
the last release (October 17, 1977). I\s usual, the list of compiler- related change requests
closed by Mesa 4.0 will appear separately as part of the Software Release Description.

The language accepted by the Mesa 4.0 compiler has several significant extensions and a few
minor changes. It features a process mechanism, enhanced arithmetic capabilities, long and
base- relative pointers, and more general block structure.

llecause of changes in symbol table and BCD formats, all existing Mesa programs must be
recompiled. There are minor incompatibilities with Mesa 3.0 at the source level in the areas
of signed/unsigned arithmetic and the scope' of OPEN in an iterative statement. These
incompatibilities should' have negligible impact on existing programs. The syntax and
semantics of declaring (but not calling) machine- coded procedures have changed
substantially.

Page and section numbers in this update not otherwise qualified refer to the Mesa Language
forI anual, Version 3.0. The BNF descriptions of new or revised syntax follow the
conventions introduced in that manual. For phrase classes used but not redefined here, see
its Appendix D. Revisions of phrase class definitions are cumulative; except as noted, the
appearance of " ... " as an alternative indicates that an existing definition is being augmented.
A definition without " ... " supersedes any definition of the same phrase class in the manual.

Arithmetic

Mesa 4.0 supports double- precision integer arithmetic (type LONG INTEGER) and provides
some help with floating- point computations (type REAL). In conjunction with these changes,
the rules governing combination of signed and unsigned values have been more carefully
defined (see the Appendix to this memo).

::'yntax

PredefinedType :: = INTEGER I CARDINAL I LONG INTEGER I REAL I
BOOLEAN I CHARACTER I STRING I UNSPECIFIED I WORD

Primary ... I identifier [~xpression] I LONG [Expression]

lVlesa 4.0 Compiler Update 2

Signed and Unsigned Arithmetic

The rules governing the usc of signed and unsigned representations in single- precision
arithmetic have been reformulated. In previous versions of Mesa, conditions under which
an operation was considered to overflow were not well defined. As a consequence, options
such as overflow detection and reliable range checking were precluded. Mesa 4.0 does not
offer these options, but it does rCJTIedy the defects in the language definition.

The precise rules governing signed/unsigned arithmetic are somewhat lengthy. They appear
in an appendix to this melTIO with some background information ex plaining the motivation
and philosophy. In their effect on the acceptance or rejection of source text, the new rules
differ little from those in previous versions of Mesa; the main change is that CARDINAL -

CARDINAL is now assumed to produce a result with unsigned (instead of unknown)­
representation (sec Section 2.5.1, pages 10-12). Thus the immediate practical effect of the
new rules is minor; however, programmers should read the appendix carcfully so that their
code will work correctly even when it becomes possible to request overflow and range
checks.

The effects of the new rules with respect to subtraction are worth emphasizing. If
both operands have valid signed representations, the result is an INTEGER. If both
have only unsigned representations, the result is a CARDINAL and is considered to
overflow if the first operand is less than the second.

i: INTEGER; m, n: CARDINAL; s, t: [0 .. 10);

i +- m- n; - - should be used only if it is known that m > = n

i +- IF m > =n THEN m-n ELSE -{n-m); -- should be used otherwise

IF m- n > 0 ... comparison (and subtraction) are unsigned

IFm>n .. . a better and safer test

IF s- t < 0 .. . comparison (and subtraction) are signed

Range Assertions

The new rules mentioned above assume that there are implicit conversion functions mapping
CARDINAL to INTEGER and vice- versa. In both di rections, the "con version" amounts to an
assertion that the argument is an clement of INTEGER n CARDINAL. The programmer can
make such a range assertioll explicit. If S is an identifier of a subrange type and e is an
expression with compatible type T, the form S[e] has the same value as e and is
additionally an assertion that e IN [FIRST[sn11 .. LAST[Sn11] is TRUE.

Note that this is not equivalent to LOOPHOLE[e, S] but is an assertion about the range
of a value that already has an appropriate type.

In Mesa 4.0, such assertions must be verified by the programmer. There is not an option to
gencrate code that checks these assertions, whether implicit or explicit. An assertion can be
used to control the assumed representation of a subexpression; otherwise, it is currently
treated as a comment by the compiler.

Hxampies

INTEGEA[n] , Ind ex Type[i- j]

Mesa 4.0 Compiler Update 3

LOllg Integers

Mesa 4.0 supports double- precision integers. There is a new predeclared type LONG INTEGER,

values of which occupy two words (32 bits) of storage and range over [- 231 .. 231). There is
no special denotation for LONG INTEGER constants. The type of any decimal or octal constant
in [216 •• 231) is LONG INTEGER; slnaller constants are converted as requi red by context. The
arithmetic operators +, -, *, I, MOD, MIN, MAX, (unary) - and ABS have double-precision
extensions that perform the mapping

(LONG INTEGER)11 ~ LONG INTEGER;

furthermore, LONG INTEGERS are ordered, and the relational operators =r #, <,. < =r >, > =and IN
have ex tensions that perform the mapping

(LONG INTEGER)11 ~ BOOLEAN.

Some fine points:

All LONG INTEGERS have a signed representation; the Mesa 4.0 language does not
provide LONG CARDINAL.

Addi tion, subtraction, and comparison of LONG INTEGERS is fast; multiplication and
di vision are done by so ftware and are relatively slow.

In Mesa 4.0, it is not possible to declare a type that is a subrange of LONG INTEGER.

Mesa provides an automatic coercion from any single- precision numeric type (INTEGER,
CARDINAL, etc.) to LONG INTEGER. This coercion is called widening and is discussed in more
detail below. It is applied when necessary to nlatch inherent and target types (e.g., in
assignments). Also, if any operand of an arithmetic or relational operator is a LONG INTEGER,
the double- precision operation is used. In most cases, widening of any shorter operands is
automatic. Thus single- and double- precision quantities can be mixed freely within
expressions to yield double- precision results. .

The form LONG[e] explicitly forces the widening of any expression e with a single- precision
numeric type. There are no automatic conversions from LONG INTEGER to any single­
precision type (but sec the 1\1 esa 4.0 System Documentation for some standard procedures).

Widening of a single- precision constant is done at compile- time. Currently, no
other arithmetic or relational operations on LONG INTEGERS arc performed at
compile- time, even if all operands are constant.

Widening of a single- precision expression is substantially more efficient if that
expression has an unsigned representation.

Examples

i: INTEGER;

ii: LONG INTEGER;
c2: LONG INTEGER =2; a compile- time constant
c4: LONG INTEGER =c2*c2; not a compile- time constant

ii .. 0; ii ... ii+l; ii ... i; ii .. (ii+i)/c2;

ii .. LONG[0]; ii" (ii -tlONG[i])/ c 2;

i .. ii; ii ... LONG[c4] ;

all valid

also valid (and explicit)

invalid

Mesa 4.0 Compiler Update 4

Reals

A standard representation for floating~ point values has not yet been chosen. Mesa 4.0
nevertheless provides some help with floating~ point computation. It allows declaration and
assignment of REAL values; furthermore, REAL expressions constructed using the standard
infix operators (except MOD) are converted to sequences of procedure caBs by the compiler.

A REAL value is assumed to occupy two words (32 bi ts) of storage. Beyond this, no
assumptions are made about the representation of REALS. Users of real arithmetic must
provide and instaB an appropriate set of procedures for performing the arithmetic
operations (see the /'vJesa 4.0 System Documentation also). The procedures must be
assignable to variables declared as follows:

FAD]), FSUB, FMUL, FDIV: PROCEDURE [REAL, REAL] RETURNS [REAL];

FeDAl P: PROCEDURE [REAL, REAL] RETURNS [INTEGER]:
- - returns a value that is: 0 if equal, negative if the first is less, positive otherwise

FLOAT: PROCEDURE [LONG INTEGER] RETURNS [REAL];

This scheme has the following consequences:

All other arithmetic operations (ASS, MIN, etc.) are fabricated from these primitives.

The source language provides no denotation for real constants, since the compiler
does not know the internal format expected by the user~sl1pplied procedures. As
discussed below, values of type INTEGER or LONG INTEGER are automatically converted
to type REAL at run~ time; thus integer constants can appear in real expressions ·but
will be reconverted each time the expression is evaluated.

Of course, implementers of floating- point packages are free to provide their own procedures
for constructing REAL values from, e.g., octal constants, but a REAL "constant" currently
cannot be a compi1e~ time constant and cannot appear in a DEFINITIONS module (unless it is
defined using a LOOPHOLE).

Examples

Two: REAL =2;

Half: REAL =lITwo;

Bug: REAL =1/2;

Implicit Conversions

means Two: REAL = FLOAT[2] ;

means Half: REAL = FLOAT{ 1] 1 Two;

means Bug: REAL = FLOAT{ 0] ; (integer division)

Conversions from INTEGER or CARDINAL to LONG INTEGER and from LONG INTEGER to REAL are
called wid cfling. Widening is automatic in the following situations:

An expression will be widened from its inherent type to match its target type (see
Section 3.5, pages 37- 39). This occurs in assignments and assignment~ like contexts
(such as record construction or extraction).

The types of the operands of an arithmetic operator will be balanced by widening
un til all match the type of the widest operand (but not further, even if the target
type is wider).

In Mesa 4.0, automatic widening is not completely implemented in the following situations:

Operands of MIN and MAX will be· widened to match the target type if one is well
defi ned and otherwise to match LIfe type of the fi rst operand, but there is no general
balancing.

IVlesa 4.0 COlllpiler Update 5

The endpoints in the right operand of IN will be widened to match the type of the
left operand, but there is no general balancing. .

Expressions appearing in the arms of conditionals will be widened as required by the
target type, but there is no general balancing when the target type is ill- defined.

The expressions selecting the arms of a SelectExpr or SelectStmt will be widened to
match the type of the selector, but the selector itself is never widened.

The following examples illustrate widening.

i, j: INTEGER; ii: LONG INTEGER; x: REAL;

ii +- i; x +- i; x +- ii; x +- IF i < j THEN i ELSE ii

i +ii, ii +1 added as LONG INTEGERS (fOf any target type)

i +x, x +1, ii +x added as REALS

x > i*j + ii - - multiplied as INTEGERS, added as LONG INTEGERS, compared as REALS

The following are currently considered errors.

ii IN [i .. x)
(IF i < j THEN i ELSE ii) < x ill- defined target fOf IfExpr
SELECT i FROM X ~ ... ; > ii ~ ... , ENDCASE

In cases in which autOInatic Widening is not implemented or docs not gi ve the desired result,
the operator LONG or user- supplied procedure FLOAT can be used. .

til, n: CARDINAL; ii: LONG INTEGER;

ii +- m + IZ added as CARDINALS (overflow lost)

ii +- LONG[m + n] ditto

ii +- LONG[fIl] + LONG[n] added as LONG INTEGERS (overflow captured)

A fine point: There afe system- provided procedures for performing certain
multiplication and division operations in which the operands and results do not all
have the SaIne precision. These procedures provide less expensive equivalents of, e.g.,
LONG[11l] *LONG[n]. See the Mesa 4.0 System Documentation.

Long Pointers Hnd Array Descriptors

Mesa 4.0 implements both long pointers and array descriptors with long pointers as base
components. These pointers provide access to the entire virtual memory of the Dstar. For
compatibility, long pointers are also supported on the Alto, but they do not provide any
additional addressing capability.

Syntax

TypeConst IUcto r .. - ... I LongTC

LongTC :: = LONG TypeSpecification

ArrayOescriptorTC ::= DESCRIPTOR FOR TypeSpecification I
DESCRIPTOR FOR PackingOption ARRAY OF TypeSpecification

lVlesa 4.0 Compiler Update 6

The type constructor LONG can be applied to INTEGER (discussed in the preceding section),
any pointer type, or any array descriptor type. An attempt to lengthen any other type is an
error.

The type constructor DESCRIPTOR FOR can be applied to any array type, including one
designated by a type identifier. (This corrects an oversight in previous versions of Mesa).
In addition, specification of an IndexType for the described array type can be omitted if its
constructor follows immediately. In this case, a sub range of CARDINAL with zero origin and
indefinite upper bound is assumed for the index type.

Long Pointers

A long pointer value occupies two words (32 bits) of storage. Long pointers are typically
created by lengthening (short) pointers as described below. In particular, NIL is autolnatically
lengthened to provide a null long pointer when required by context. The standard
operations on pointers (dereferencing, assignment, testing equality, comparison if ORDERED,
etc.) all ex tend to long pointers

On the Dstar, NIL is lengthened by prefixing a word of zeros and thus has an MDS­
independent representation. All other pointers are lengthened by adding the MDS
base. Every pointer generated in this way is represented by an 8 bit field of zeros
followed by a 24 bit virtual address. Long pointers with certain other formats can
be created using LOOPHOLE and will be correctly dereferenced by the hardware.
There is no normalization prior to operations on pointers, however, and such
pointers will give anomolous results in, e.g., comparisons.

On the Alto, pointers arc lengthened by prefixing a word of zeros; In all
dereferencing operations, that prefix is discarded (without a check for zero) and the
remaining word is interpreted as the actual address.

Doth automatic widening and explicit widening (using the operator LONG) are provided' for
pointer types as well as for numeric types. Widening an expression of type POINTER TO T
produces a value of type LONG POINTER TO T, i.e., only the length attri bute is changed by the
widening. The rules and restrictions governing widening in Mesa 4.0 that are discussed in
the preceding section apply equally to pointers.

The operator @ applied to a variable of type T produces a pointer of type LONG POINTER TO
T if the access path to that variable itself involves a long pointer (other than the ilnplicitly
accessed MDS pointer) and of type POINTER TO T otherwise.

Limited pointer arithmetic continucs to be supported in Mesa 4.0, but programlners are
encouraged to usc BASE and RELATIVE pointers (described in the nex t section) if the purpose
of the arithmetic is simple relocation. If either operand in a pointer addition or subtraction
is long, all operands are widened and the result is long.

Rxampies

R: TYPE = RECORD [I: T, ...];
p. q: POINTER TO R;"
pp, qq: LONG POINTER TO R;
pT: POINTER TO T;
ppT: LONG POINTER TO T;

The following arc valid.

Mesa 4.0 Compiler Update

PP ... qq; pp +- NIL; pp'" p

pp =qq, pp =NIL, pp =q - - long comparisons

pT ... @p.j; ppT +- @pp.f

ppT +- @p! pointer lengthened

pp-tii, pp+i, p+ii, pp- qq, pp- q long results

The following are not valid.

pp =ppT

p ... pp; pT +- @pp.f

Long Array Descriptors

type clash

no automatic shortening

7

In a long array descriptor, the BASE component is a long pointer and the descriptor occupies
three words (48 bits) of storage. All the standard operations on array descriptors (indexing,
assignment, testing equality, LENGTH, etc.) extend to long array descriptors. The type of
BASE[d esc] is long if the type of d esc is long.

Array descriptors are widened, either automatically or explicitly, according to the usual rules
and restrictions. Long array descriptors are created by applying DESCRIPTOR[] to an array
that is only accessible through a long pointer (other than the MDS pointer), by applying
DESCRIPTOR[,,] to operands the first of which is long, or by widening a (short) array
descriptor.

Examples

d: DESCRIPTOR FOR ARRAY OF T;
d d: LONG DESCRIPTOR FOR ARRAY OF T;
i, n: CARDINAL;
pp: LONG POINTER TO ARRAY [0 .. 0) OF T;
x: T;

dd ... DESCRIPTOR[pp, 10, 7]; dd'" d

x ... dd[i]

PP ... BASE[dd] ; 1l'" LENGTH[dd]

Base and Relative Pointers

Mesa 4.0 deals more satisfactorily with base- relati ve pointers, i.e., pointers that must be
relocated by adding some base value before they are dereferenced. Such pointers are useful
for reducing the number of bits stored when objects can be identified by slnall offsets, and
for dealing with collections of interlinked data items that are subject to relocation as entire
aggregates.

Syntax

PointerTC

BaseOption .. -

TypeConst rueto r

Ordered BaseOption POINTER Optionallnterval PointerTail

empty I BASE.

::= ... I RelativeTC

Mesa 4.0 Compiler Update 8

RelativeTC ::= Typeldentifier RELATIVE TypeSpecif~calion

In a PointerTC, a noncmpty Optionallnterval declares a subrangc of a pointer type, the values
of which arc restricted to the indicated interval (and can potentially be stored in smaller
fields). Normally, SLlch a subrange type should be llsed only in constructing a relative
pointer type as described below, since its values cannot span an MDS.

The BaseOption BASE indicates that poin ter values of that type can be used to relocate
relative pointers. Such values behave as ordinary pointers in all other respects with one
exception: subscript brackets never force implicit dereferencing (see below). The attribute
BASE is ignored in determining the assignability of pointer types.

A RelativeTC constructs a relative pointer or relative array descriptor type. The
Typeldentifier must evaluate to some (possibly long) pointer type which is the type of the
base, and the TypeSpecification must evaluate to a (possibly long) pointer or array descriptor
type.

Note that the form

LONG Typeldentifier RELATIVE TypeSpecification

is always in error, since LONG cannot be applied to a relative type. The type
designated by the TypeSpecification can be lengthened (to give a relative long
pointer) using the form

Typeldentifier RELATIVE LONG TypeSpecification .

Rela tive Pointers

In the following discussion, assume the declarations

BaseType: TYPE = BASE POINTER TO ... ;
Full Type: TYPE = POINTER TO ... ;
Re/ativeType: TYPE = lJaseType RELATIVE Full Type;
base: BaseType;
offset: RelativeType;
p: Full Type.

If FullType is some pointer, long pointer, or pointer subrange type, Re/ativeType is declared
to be a relative pointer type. Values with type Re/ativeType are pointers that must be
relocated, by adding some value of type lJaseType, before they can be dereferenced. Also,
relati ve pointers are never widened automatically. With respect to other operations
(assignment, testing equality, comparison if Ji'ullType is ORDERED, etc.), relative pointers
behave like pointers of type FullType. In particular, the amount of storage required to store
such a pointer is determined by Full Type. Note, however, that RelativeType and FullType
arc distinct types, incompatible with respect to, e.g., assignment and comparison.

Relocation of a relative pointer is specified by using subscript-like notation in which the
type of the "array" is /JaseType and that of the "index" is RelativeType, i.e., the absolute
pointer is denoted by an expression with the form

base[offset]

This expression has the type FullType and the value LOOPHOLE[base] -+offset. Note that
base[offset] is not a variable; typical variable designators arc basc[offset] t or
base[offset] field. (In addition, the lIslial rules for impliciL dereferencing apply in, c.g., an
Openltem). Relocation prior to dercferencing is mandatory; offsett , offsct./ield, etc. are
errors.

MCS~l 4.0 Compiler Update 9

Some fi ne poi nts: .

The type of base[offset] is more precisely defined as follows: if FIlllType is a
sllbrange pointer type, the subrange is discarded to obtain some type T; otherwise, T
is Full Type. If FullType is not a long pointer type but JJaseType is, then the final
type is LONG T; otherwise, it is T. In other words, the resulting type is long if either
the base type or the relative type is.

The declaration of a relative pointer does not associate a particular base value with
that pointer, only a basing type. Thus some care is necessary if multiple base values
are in use. Note that the final type of the relocated pointer is largely independent of
the type of the base pointer; the relati ve pointer determines the type.· Sometimes this
observation can be used to help distinguish different classes of base values without
producing relocated pointers with incompatible types.

The base type must have the attribute BASE. Conversely, the attribute BASE always
takes precedence in the interpretation of brackets following a pointer expression.
Consider the following declarations:

p: POINTER TO ARRAY IndexType OF ••• ;

q: BASE POINTER TO ARRAY IndexType OF

The expression p[e] will cause implicit dereferencing of p and is equivalent to
pt[e]. On the other hand, q[e] is taken to specify relocation of a pointer, even if
the type of e is lnd ex Type and not an appropriate relative pointer type. In such
cases, the array must (and always can) be accessed by adding sufficient qualification,
e.g., qt [e] ; nevertheless, users should exercise caution in using pointers to arrays as
base pointers.

Mesa 4.0 supplies no mechanisms for constructing· relative pointers. It is expected that such
values will be created by user- supplied allocators that pass their results through a LOOPHOLE

or from pointer arithmetic involving LOOPHOLES.

Examples

pt .- baser offset] t

p +- base[offset] - - valid pointer assignment (but often unwise)

The following are invalid.

p +- offset; pt +- offsett

p[offset] - - p has incorrect type

Relative Array Descriptors

Relative array descriptor types are entirely analogous to rclati ve pointer types; indeed, values
of such types can be viewed as array descriptors in which the base cOJnponents are relative
pointers. Note the following:

In the constructor of a relative array descriptor type, the TypeSpecification must
evaluate to a (possibly long) array descriptor type.

In the notation introduced above, a reference to an clement of the described array
. has the form

base[offset] [i)

Mesa 4.0 Compiler Update 10

where i is the index of the element.

Relative array descriptors are constructed using the DESCRIPTOR operator. If p is B RELATIVE

pointer, the forn1 DESCRIPTOR[p, 11, 7] produces a value with type 11 RELATIVE DESCRIPTOR FOR

ARRAY OF T. Also, the operators BASE and LENGTH can be applied to a JJ RELATIVE array
descriptor; the former produces a B RELATIVE pointer.

Block Structure

The previous concepts of procedure body and compound statement have been merged. A
block can appear anywhere a statement Is acceptable and can introduce new identifiers with
scope smaller than an entire procedure (or module) body. In addition, catch phrases and
exit labels can now appear at the outermost level of a procedure body.

The syntax for declaring procedures with bodies expresscd in machine code has also been
revised (in anticipation of morc general inline procedures). The corresponding semantics
are machine dependent and are not specified here.

Syntax

ModuleBody "­.. - Block

ProcedureBody :: = Block

Statement :: = ... I Block I ... - - replaces CompoundStmt

Block ::= BEGIN

OpenClause
EnableClause
Decla rationSe ries
StatementSe lies
ExitsClause
END

EnableClause ::= empty I
ENABLE Catchltem ; I
ENABLE BEGIN CatchSeries END ; I
ENABLE BEGIN CatchSeries ; END ;

MachineCode .. - MACHINE CODE BEGIN InstructionSeries END

InstructionSeries ::= empty I ByteList I
ByteList ; InstructionSeries

ByteList ::= Expression I ByteList , Expression

In addition, the phrase classes Body, CompoundStmt and MachineCodeTC are deleted.

During the execution of a Mesa program, frames are anocated at the procedure and module
level only. Any storage rcquired by variables declared in an internal Block (one used as a
Statement) is allocated in the frame of the smallest enclosing procedure or module. When
sllch internal blocks are disjoint, the areas of the frame used for their variablcs overlay one
another.

The scopes of idcnli fiel's introduced in the various components of a block are summarized
by the following diagram, where indcntation is used to show the scope of each phrase:

Mesa 4.0 Compiler Update

BEGIN

OpenClause
EnableClause

Decla rationSe ties
Statement Series

ExitsClause
END

11

Note that any newly declared identifiers are visible only in the DeclarationSeries and
StatementSeries of the block. Any exit labels are visible within the EnableClause (as well
as the luore deeply indented constructs); on the other hand, any catch phrase in the
EnableClause is not enabled within the ExitsClause. If the Block is used as a module or
procedure body, the parameters and results are visible throughout the Block. Thus it is
possible to open records designated by parameters or to assign return values within an
ExitsClause (but the assigned values cannot involve internally declared variables).

A CONTINUE statement appearing in the EnableClause of a Block causes exit from that block.
A similarly placed RETRY statement causes reexecution of the block. In the latter case, any
ini tializing values in the DeclarationSeries are recomputed.

Note that an optional semicolon can now terminate a CatchSeries in an EnableClause.

Nested Block Structure

With the introduction of blocks, procedure bodies can appear where they were syntactically
prohibited in previous versions of Mesa. Special rules apply to the inlieritance of scope
when a procedure body is declared with i n the DeclarationSeries or (with nesting) within "the
StatementSeries of a Block. Within the inner procedure body:

Identifiers made visible by the OpenClause remain visible (unless redeclared).

Catch phrases in the EnableClause are not inheri ted and not enabled.

Identifiers declared in the DeclarationSeries remain visible (unless redeclared).

Jumps to labels in the ExitsClause are prohibited.

Assume the following skeletal declaration:

Outer: PROCEDURE [•••] =
BEGIN

ENABLE s ~ Handler[];

Inner: PROCEDURE [...] = BEGIN ••• END;

EXITS

Label ~ ...
END

If the signal s is raised in an instance of Illner, Handler is not invoked there. Handler will,
of course, be invoked eventual1y if s propagates to the enclosing instance of Outer. (This
noninheritance rule prevents double execution of handlers in sllch situations.) In Mesa 4.0,
the statement GO TO Label is considered an error within the body of Inller.

Mesa 4.0 Compiler Update 12

Iterative Statements.

For consistency with blocks, the scope rules for iterative statements have been revised
slightly. In addition, a new statement form that terminates one iteration of the loop body
and initiates the next ha's been added.

Syntax

Statement "­.. - ... I LoopCloseStmt

LoopStmt ::=LoopControl
DO

OpenClause
EnableClause
StatementSeries
LoopExitsClause
ENDLOOP

LoopCloseStmt :: = LOOP

The scopes of identifiers introduced in the various components of a loop are summarized by
the following diagratn (cf. Blocks):

LoopCont rol
DO

OpenClause
EnableClause

StatementSe ries
LoopExitsClause

ENDLOOP

In previous versions of Mesa, the scope of the OpenClause excluded the LoopExitsClause.
As in the case of blocks, any exit labels are visible within the EnableClause, and any catch
phrase in the EnableClause is not enabled within the ExitsClause.

The statement LOOP can appear only within the body of an iterative statement. Executing it
terminates the current iteration of the smallest enclosing LoopStmt, after which the
LoopControl is updated/reevaluated and, if appropriate, the next iteration is started. Thus
the. construct

DO ... LOOP ... ENDLOOP

is an abbreviation for

DO
BEGIN

.•• GO TO Skip
EXITS Skip ~ NULL;

END

ENDLOOP •

Included Identifier Lists

In Mesa 4.0, an item in the DIRECTORY clause can explicitly list the identiriers eligible for
inclusion from a designated tTIodule. Such included idelltlfier lisls serve as compiler­
checked (but programmer- maintained) lists of intermodular connections and dependencies.

Mesa 4.0 Compiler Update 13

Syntax

Include List "­.. -
Includeltem" :: =

Includeltem I IncludeList , Includeltem"

identifier : FROM FileName I
identifier : FROM FileName USING [IdUst]

If the USING clause is absent, the item's identifier has all the properties and uses described in
Sections 7.2.1 and 7.2.2. The only effect of a USING clause is to enumerate (and potentially
restrict) the set of identifiers made accessible to the including module. Use of the identifier,
either within an OPEN clause or for explicit qualification, makes visible only those
iden tifiers in the IdUst.

Some fi ne points.

Only identifiers declared in the DeclarationSeries that is part of the ModuleBody of
the included module are mentioned in the IdUst; in particular, neither the included
module's own identifier nor identifiers of record fields, enumeration constants, etc.
appear in this list.

Each identifier appearing in the IdUst must be defined in the module designated by
the Includeltem.

A warning is generated for each identifier appearing in the IdUst but not used
explicitly in the including module. Identifiers used only implicitly (to describe
attributes of explicitly included identifiers) should not be listed.

The IdUst restricts the set of identifiers available for" inclusion from a lTIodule. It
does not restrict export into an included interface. The identifier of an exported
item should not "appear in the list unless the intention is to reference a different
item with the same name through an imported instance of the interface.

The following example assumes the declaration of SimpleDefs appearing on page 92.

DIRECTORY

SimpleDeJs: FROM "simpledefs" USING [Range, PairPtr];
Exampl e: PROGRAM =

BEGIN

First: PROCEDURE [p: SimpleDefs.PairPtr] RETURNS [SimpleDefs.Range] =
BEGIN

RETURN [IF P = NIL THEN 0 ELSE p.first]
END;

END.

Note that Pair does not appear in the included identifier list (because it is only
referenced implicitly, through the definition of PairPtr), nor does first (because it is
declared in a record, not in the body of SimpleDeJs itself). Any reference to
Simpl eDefs.l imit would be an error in this example.

Processes

Mesa 4.0 supports a process mechanism in which processes are created by forking to
procedures and are synchronized by entry to monitors. Most of the information about the
semantics and intended usage of Mesa processes appears in the Alesa 4.0 Process Update
(henceforth ci ted as Process). The Al esa 4.0 Change SUlIlma ry can tai ns a com plete example,
and additional examples appear in the Process document. This section summarizes the
syntax and deals with a few linguistic details.

Mesa 4.0 Comp iler Upd~ltc 14

SYlltax

PredefinedType ... I MONITORLOCK I CONDITION

ProgramTC ::= ... I
MONITOR ParameterList RetumsClause LocksClause

LocksClause ::= empty I
LOCKS Expression
LOCKS Expression USING identifier TypeSpecification

TypeConst ructo r ... I ProcessTC

ProcessTC :: = PROCESS RetumsClause

Declaration IdUst : Access EntryOption TypeSpecification Initialization; I
IdUst : Access TYPE = Access TypeSpecification ;

Ent ryOption

RecordTC "­.. -
empt y I ENTRY I INTERNAL

MonitoredOption MachineDependent RECORD [VariantReldUst]

.. - empty I MONITORED Manito redOption

Statement :: = ... I WaitStmt I NotifyStmt I JoinCall

:: = ... I Fa rkCall I JoinCall Expression

WaitStmt ::= WAIT Variable OptCatchPhrase

NotifyStmt :: = NOTIFY Variable I BROADCAST Variable

ForkCall ::= FORK Call

JoinCall ::= JOIN Call

Fork ing a Ild Joining

Processes are created and destroyed by FORK and JOIN operations. If procedure P has type
PROCEDURE T RETURNS T', then the expression FORK P[...] produces a process handle h with
type PROCESS RETURNS T'. JOIN requires a process handle as its operand. The fonn JOIN h
produces an argument record of type T' (or stands as a statement if the RetumsClause is
empty). As type mappings,

FORK:

JOIN:

Some fine points:

PROCEDURE T RETURNS T' X T ~ PROCESS RETURNS T'

PROCESS RETURNS T' -+ T'.

A catch phrase can be attached to a FORK or JOIN (by specifying it in the Call).

Unlike an ordinary procedure call, a FORK returns a value with some process type
(not a record type),. and that value cannot be discarded by writing an empty
extractor.

Afonitored Afodules

A ProgramTC containing MONITOR can be lIscd only in a ModuleHead to spccify the type of a
program module. The LocksClause provides additional in formation about the program body
and is not parl of the modulc's type. If a monitor is to be cxporled. thc correct type for the
intcrface i tcm in thc DEFINITIONS modulc is obtained by rcplaci ng MONITOR by PROGRAM and
dclcti ng th e LocksClause.

Mesa 4.0 Compiler Update 15

Synchronization of. processes is based upon variables wi th the system - defi ned types
MONITORLOCK and CONDITION. A distinguished MONITORLOCK with the identifier LOCK is
implicitly declared in the global frame of any MONITOR with an empty LocksClause. If the
MonitoredOplion MONITORED appears in the definition of a record type, each record of that
type silnilarly con tains an im plici tly declared and distinguished MONITORLOCK wi th identifier
LOCK. Lock and condition variables can also be declared explicitly, but any MONITORLOCK

so declared is not distinguished, even if its identifier .is LOCK (see below).

When a variable with type MONITORLOCK or CONDITION is a component of a (local or global)
frame, it is initialized automatically when the frame is created. In all other cases, a system
procedure must be called to establish appropriate Initial values (see Process, Section A.6).

Entry Procedures

The EntryOption ENTRY can appear only in a declaration within a monitor; when it docs, the
TypeSpecification must evaluate to a procedure type and the initialization must specify a
procedure body (Block). Note that ENTRY does not imply PUBLIC, but PUBLIC ENTRY is a
permissible (and common) combination.

Entry into a monitor through an ENTRY procedure is protected by a monitor lock. The
. identity of that lock is determined by the declaration of the Inouitor. If the LocksClause is
empty, entry is controlled by the distinguished variable LOCK. Otherwise, the LocksClause
must designate a variable with type MONITORLOCK, a record containing a distinguished lock
field, or a pointer that can be dereferenced (perhaps several times) to yield one of the
preceding. There are two cases (see Process, Section A.4.2):

If the USING clause is absent, the monitor is a multi- module one. The lock is located
by evaluating the LOCKS expression in the context of the monitor's main body; i.e.,
the monitor's parameters, imports, and global variables are visible, as are any
identifiers made accessible by a global OPEN. Evaluation occurs upon entry to, and
again upon exit froln, the ENTRY procedure (and for any internal WAITS). The
location of the. designated lock can thus be affected by assignments within the
procedure to variables in the LOCKS ex pression. To avoid disaster, it is essential that
each reevaluation yield a designator of the same MONITORLOCK.

If the USING clause is present, the monitor is an object monitor. The lock is located
as above with one exception: any occurrence of the identifier declared in the USING
clause is bound to that argument of the ENTRY procedure having the same identifier
and a compatible type. If there is no sllch parameter, the ENTRY is in error. The
same care is necessary with respect to reevaluation; to emphasize this, the
distinguished argument is treated as a read- only value within the body of the ENTRY
procedure.

The following examples illustrate the selection of locks.

R: TYPE = MONITORED RECORD [...];

RR: TYPE = RECORD. [... , specialLock: MONITORLOCK, •••];

NIl: MONITOR =
BEGIN
- - LOCK: MONITORLOCK implicitly declared here
PI: PUBLIC ENTRY PROCEDURE [...] =

BEGIN - - locks LOCK - - ... END;

END.

Mesa 4.0 Compiler Update

A12a: MONITOR [p: POINTER TO POINTER TO R] LOCKS P =
BEGIN

P 2: PUBLIC ENTRY PROCEDURE [...] =
BEGIN -- locks ptt.LOCK -- ... END;

END.

A12b: MONITOR [p: POINTER TO POINTER TO RR] LOCKS ptt.specialLock =
- - specification of the lock is mandatory here
BEGIN

P 2: PUBLIC ENTRY PROCEDURE [...] =
BEGIN -- locks ptt.specialLock -- ... END;

END.

A13: MONITOR LOCKS P USING p: POINTER TO R =
BEGIN

P3: PUBLIC ENTRY PROCEDURE [p: POINTER TO R, ...] =
BEGIN - - locks p.LOCK - - ... END;

END.

16

Signals require special attention within the body of an ENTRY procedure. A. signal raised
wi th the monitor lock held will propagate wi thout releasing the lock and possibly invoke
arbitrary computations. For errors, this can be avoided by using the RETURN WITH ERROR

construct described in the next section.

When an instance of an ENTRY procedure is to be destroyed because of a remote exit from a
catch phrase (unwinding), the lock should also be released. In Mesa 4.0, it is the
programmer's responsibility to determine if ul1winding is possible and, if so, to provide a
catch phrase for UNWIND that restores the monitor invariant. Code to actually release the
lllonitor lock is autoillatically appended to the outermost enabled catch phrase for UNWIND in
an ENTRY procedure. That catch phrase can have a NULL body if no other cleanup actions are
required.

Illternal Procedures

The EntryOption INTERNAL can appear only in a declaration within a monitor; when it does,
the TypeSpecification must evaluate to a procedure type and the initialization must specify a
procedure body (Block). Note that INTERNAL does not imply PRIVATE (if the default is PUBLIC),

but PUBLIC INTERNAL is considered an improper combination of attributes (warning only).

A call of an INTERNAL procedure is permitted only within an ENTRY procedure or another
INTERNAL procedure. Porking to an INTERNAL procedure is never allowed. An INTERNAL
procedure can safely access monitored data and can perform WAIT, NOTIFY and BROADCAST
operations. A WAIT operation implicitly references the monitor lock; thus an INTERNAL

procedure of an object monitor that contains a WAIT must have a parameter designating the
locked object as described above.

Some fine points:

In Mesa 4.0, the attribute INTERNAL is associated wi th a procedure's body, not its type.
Thus INTERNAL cannot be specified in a DEFINITIONS module, and checks on
intermodular calls of internal procedures arc not performed (except for lhe PUBLIC

INTERNAL warning). Also, lhe allribule INTERNAL is IOSl when a procedure value is
assigned to a variable or passed a"s an argument of a procedure. Such assignments
should be done wilh caution.

Mesa 4.0 Compiler Update 17

Signals raised by INTERNAL procedures require special consideration. When the
construct RETURN WITH ERROR is executed within an INTERNAL procedure, the monitor
lock is /lot released prior to signal propagation.

Wait and Notify

Only ENTRY and INTERNAL procedures within a monitor can contain WAIT, NOTIFY and
BROADCAST statements.

Error Returns

It is possible to delete a procedure instance before raISIng an error detected by that
procedure. Within an ENTRY procedure of a monitor, the monitor lock is released before the
error is raised. (Such procedures arc expected to be the primary users of this facility.)

Syntax.

RetumStmt .. - ... I RETURN WITH ERROR Call

Consider the following skeletal code:

Failure: ERROR [•••] = CODE;

Proc: ENTRY PROCEDURE [...] RETURNS [...] =
BEGIN
ENABLE UNWIND ~ ... ;

IF cOlld 1 THEN ERROR Failure[...] ;
IF cond 2 THEN RETURN WITH ERROR Failure[...] ;

END;

Execution of the construct ERROR Failure[...] raises a signal that propagates until some
catch phrase specifics an exit. 1\ t that time, unwinding begins; the catch phrase for UNWIND
in Proc is executed and then Proc's frame is destroyed. Within an entry procedure sllch as
Proc, the lock is· held until the unwind (and thus through unpredictable computation
performed by catch phrases).

Execution of the construct RETURN WITH ERROR Failure[...] releases the monitor lock and
destroys the frame of Proc before propagation of the signal begins. Note that the argument
list in this construct is determined by the declaration of Failure (not by Proc's RETURNS
clause). The catch phrase for UNWIND is not executed in this case. The signal Failure is
actually raised by the system, after which Failure propagates as an ordinary error (beginning
with Proc's caller).

Multiword Constilnts

Record and array constructors in which all components are themselves constant define so­
called multiword COllstallts. Such constants are now constructed during compilation and can
be encoded within Mesa symbol tables. This has the following consequences:

A declaration equali ng an identifier to a multiword constant (but not to a string
literal) can appear in a DEFINITIONS module, and the constant value thereby becomes
available to users of "that module.

Mesa 4.0 Compiler Update 18

Constant scl.ection from such values (by field selection or by indexing with a
constant subscript) is also done during compilation.

Furthermore, if an identifier is equated to a multiword constant in a program module,
exactly one copy of that constant appears in the code, and its components can be read
(using, e.g., a computed index) directly from the code segment. This allows table driven
programming in which the tables are automatically swapped.

1\ fine point: A packed array or an array of multiword clements is currently copied
into a data area each time one of its clements is accessed.

The following declarations define multi word constants and can appear in a DEFINITIONS

module.

Id ent: RECORD [version: CARDINAL, id: CHARACTER, released: BOOLEAN] =
[1, '#, FALSE];

Powers: ARRAY [1..4] OF CARDINAL = [2, 4, 8, 16];

Nonsense: CARDINAL = IF Id ent.released THEN [dent. version ELSE Powers[2];

The following are not compile- time constants in Mesa 4.0.

"abc", ("abc")[1] .

Miscellaneous Language Changes

Local Strings

The body of a string literal is ordinarily placed in the global frame of the module in which
the literal appears. Pointers to that body (the actual STRING values) can then be used freely
with little danger that the body will move or be destroyed. Unfortunately, this scheme .can
consume substantial amounts of space in the (permanent and unmovable) global fraIne area.

If a string literal is followed by 'L (e.g., "abc"L), a copy of the string body is moved from
the code to the local frame of the smallest enclosing procedure whenever an instance of that
procedure is created. As a corollary, the space is freed and the stri ng body disappears when
the procedure returns. Thus it is important to insure that pointers to local string literals are
not assigned to STRING variables with lifetimes longer than that of the procedure.
Programmers should avoid using local string Ii terals until performance tuning is necessary
(except perhaps in calls of straightforward output procedures).

Character Arithmetic

The following arithmetic operations are now defined for values of type CHARACTER:

CHARACTER + INTEGER ~ CHARACTER

INTEGER + CHARACTER ~ CHARACTER

CHARACTER - INTEGER ~ CHARACTER

CHARACTER - CHARAC:rER ~ INTEGER.

Other arithmetic operations do not allow characters as operands, and values of type INTEGER

and CHARACTER cannot be cross- assigned.

Examples

c: CHARACTER;

d: INTEGER +- C - '0; - - consider a translation table instead

l\tlesa 4.0 Compiler Update 19

IF C IN ['a .. 'z] THEN c .. 'A + (c- 'a)

ScI ectiOIlS

More general expressions are allowed to label arms of selections when there is no initial
relational operator.

Test ::= Expression I RelationTail

Example

SELECT TRUE FROM .

i > 0, j) 0::7 s/;
p AND q ::7 s2;
k > 0 OR q ::7 s3;

ENDCASE ::7 sN

.. fortnerly Sum I RelationTail

previously required (i) 0), U) 0)
previously required (p AND q)

This is equivalent to (and perhaps more readable than)

IF i > 0 OR j > 0 THEN s /
ELSE IF P AND q THEN s2
ELSE IF k > 0 OR q THEN s3

ELSE sN

Discriminations

Previous versions of Mesa have required that all adjectives labeling an arm of a
discrimination nalTIe identically structured variants; in Mesa 4.0, this restriction is lifted. If,
however, the labels identify more than one variant structure, the record is not considered to
be discriminated within that arm and only the common fields are visible (cf. ENDCASE).

Example

R: TYPE = RECORD [
v: T,
variant: SELECT lag:* FROM

red, pink =) [vRP: 'l],
green =) [vG: 'l],
yellow ::7 [vY.· 7],
ENDCASE] ;

r: R;

WITH x: r SELECT FROM
red, pink =) ••• ;

green, yellow ::7 ... ;
ENDCASE =) ••• ;

x.v and x.vRP accessible
only x.v accessible
only x. v accessible

Mesa 4.0 also allows computed or overlaid variant records to bc compared without
discrimination if all variants have the same length. As usual, caution is advised; two rccords
interpreted as different variants can be reprcsented by the same bit pattern when computed
tags arc used.

lVIesH 4.0 Compiler Update 20

COIllJ)i141tion Options

The following compiler options have been added; they are controlled by switches in the
usual way:

Switch Option Controlled

!lIto Generating code for an Alto or Dstar

[un Terminating compilation by running another program

§.ort Sorting global variables and entry indices

The Alto/Dstar switch primarily affects the treatment of long pointers in the object code.

The run switch specifics running another program without returning to the executive. This
switch is primarily intended for usc in command files. The file name preceding the switch
specifics the program to be run. The file is assumed to contain a program requiring
standard (Bcpl) microcode if the file name's ex tension is ".RUN" and requiring Mesa

,microcode otherwise. The default extension is ".IMAGE". -Prior to execution of the
specified program, a new command file (COM.eM) is constructed containing the full file
name plus any switches following the 'r. In the case of command-line input, the remainder
of the command line is also appended.

The sorting switch has been added in anticipation of tools that will expedite updating a
module in a configuration or subsystem when the new and old versions of the object C9de
are sufficiently similar. When sorting is suppressed, the assignment of global frame offsets
and entry indices depends only upon order of declaration in the source text; on the other
hand, the generated code is 1i kely to be somewhat less compact.

Sorting of local variables is not suppressed. Unless a module uses global variables
extensively, the object code expansion is unlikely to exceed ?%.

The defaults arc to generate code for.an Alto, to terminate by returning to the executive, and
to sort global variables and entry points.

Internal Changes

The following internal changes are mentioned for completeness; see the Mesa 4.0 System
Update for more information.

Alain Body Procedure

The main body of a module is now executed in a separate local frame. 'Note however, that
any storage required by blocks or local strings in the main body is still allocated in the
global frame.

External Links

External links (for imported procedures, signals or frames) are now stored and indexed
backwards from the global frame base or code base (as selected by a binding/loading
option).

Mesa 4.0 Compiler Update 21

Alto/ Mesa Alicrocode

Both the instruction set and the opcode numbers have changed substantially.

Frame Allocation

Instructions for allocating and freeing frames are now implemented in microcode; this
greatly inceases the speed of any transfer involving a large argument record.

Distribution:
Mesa Users
Mesa Group

Mesa 4.0 Compiler Update 22

Appendix: Signed and Unsigned Arithmetic

Background alld ·Overview

In any implementation of Mesa, the number of bits available for representing a value of a
given type is fixed. Each numeric type of the language thus is restricted to some subrange
of z., the set of integers as understood in mathematics. The following types, corresponding
to the indicated subranges, arc built into the language:

INTEGER

CARDINAL

LO NG INTEGER

[_ 2N- 1 .. 2N - 1)

[0 .. 2N)

[_22N- 1 .. 22N•1)

"signed integers"

"unsigned integers"

"double- precision integers"

Here N is the word length of the machine (N=l6 for the Alto and Dstar). The programmer
can also declare types that are themselves subranges of CARDINAL or INTEGER (but not LONG

INTEGER), e.g., T: TYPE = [0 .. 10).

Let v, x, and y be variables with numeric subrange types. In principle, execution of the
assignment v +- x e y proceeds as follows:

The values of x and yare taken as elements of Z.

Those values are combined using some function f that defines the operator e over Z
and produces a result I(x,y) , also in Z.
If the result is in the subrange of Z spanned by the type of v,/(x,y) is assigned to v;
otherwise a range lailure occurs.

Unfortunately, the underlying hardware does not provide the function I but only a partial
function I' over some subrange of ~ with the property that f' agrees with f wherever both
are defined; f' is said to overflow (or underflow) elsewhere. In fact, the hardware generally
provides a family of partial functions related to f, one each for INTEGER, CARDINAL, and LONG

INTEGER. The operator e thus is generic at the hardware level, and the compiler must choose
the appropriate partial function for preserving the abstraction being used by the
programmer (or for detecting its breakdown). The choice is made by considering an
attribute of each operand called its representation.

If the type of any operand is LONG INTEGER, the rule is simple: all other operands are
converted to LONG INTEGER and the result is computed in that domain. For INTEGERS (with
signed representation), CARDINALS (with unsigned representation) and subrange types such as
T (wi th both represen tations), the issues are more subtle. Some operators, such as the
rc1ationals, are clearly generic and were recognized as such in previous versions of Mesa.
Many other operators produce the correct result modulo 2N (i.e., the "right" bit pattern) no
matter what representation is assumed; the representation affects only the definition of
overflow.

Examples (N =16)

The bit patterns representing -1 and 177777B are identical, but (177777B > 1) is
TRUE while (-1 > 1) is FALSE. Also, (-1 + 1) =0 and there is no overflow, but
(177777B + 1) cannot be represented as an unsigned number.

In a critique of Mesa [Wirth). Niklaus Wirth has argued strongly that the language should
be defined so that the overflow condition can always be specified. Note that this is a
necessary condition for implementing reliable range checking (also advocated by Wirth) but

Mesa 4.0 Compiler Update 23

not a sufficient one. Mesa 4.0 does 110/ provide options for overflow detection or range
checking but does revise the language definition so that ftiture versions can offer such
options.

While we have found no rules for mixing signed and unsigned values that are entirely
satisfactory, we believe that those presented in the following section are reasonably
unobtrusive, compatible with existing code and relatively free of surprises.

Siglled and Unsigned Numbers

This section discusses the rules now used by Mesa for choosing between signed and unsigned
versions of operations on single- precision numbers. The new rules assume that there are
conversion functions performing the following mappings:

CARDINAL ~ INTEGER

INTEGER -+ CARDINAL •

In both cases, the "conversion" amounts to an assertion that the argument is an element of
INTEGER n CARDINAL. The programmer can also make such a range assertion explicit as
described in the main body of this melno. In Mesa 4.0, such assertions must be verified by
the programmer. There is not an option to generate code that checks these assertions,
whether implicit or explicit, or code that detects overflow in arithmetic operations.

For each of the operators +, -, *, /, MOD, MIN, and MAX, there arc two single- precision
operations, mapping as follows:

INTEGERn -+ INTEGER (signed arithmetic)

CARDINALn ~ CARDINAL (unsigned arithmetic).

Similarly, there are two operations for each of the oper~tors =r #, <, < =r >, > = and IN:

INTEG ERn -+ BOOLEAN (signed comparisons)

CARDINAL n ~ BOOLEAN (unsigned comparisons).

There are no operations upon mixed representations in any case; thus all operands must be
forced to have SOlTIe common representation. The arithmetic operators also propagate that
same representation to the result.

A possible surprise is that CARDINAL is taken to be c10sed under subtraction; i.e., m- n
is considered to overflow if m and n are CARDINALS and m < n.

For any arithmetic expression, the inherent representations of the operands and the target
representation of the result are used to choose between the signed and unsigned operations
(cf. the discussion of inherent and target types, Section 3.l, pages 37- 39).

The target type determines the target representation. The target type is derived from
the type of the variable to which an expression is to be assigned, from a range
assertion applied to a subexpression, etc. If all valid values of the target type are
nonnegative, the target representation is unsigned; otherwise, it is signed. The
uri lhm etic operators listed above propagate target represen tations unchanged to their
operands, but the target representation of an operand of a relational operator is
undefined. Thus each (sub}expressiol1 has at most one target representation.

The inherent representation of a primary is determined by its type (if a variable.
funclion c~lI, etc.), by its value (if a compile- time constant), or explicitly (if a range
assertion). Possible inherent representations are signed and unsigned; in addition,

Mesa 4.0 Compiler Update 24

compile- time constants in [0 .. 2N- l) and primaries with types that are .subranges of
INTEGER n CARDINAL are considered to have both inherent representations. Inherent
representations of operands are propagated to results as described below.

The basic idea is that generic operations are disambiguated first by the inherent
representations of their operands, next by the target representation, and finally by a default
convention. If the operation cannot be disambiguated in any of these ways, the expression is
considered to be in error. The exact rules follow:

If the operands have exactly one common inherent representation, the operation
defined for that representation is selected (and the target representation is ignored).

If the operands have no common inherent representation but the target
representation is well- defined, the operation yielding that representation is chosen,
and each operand is "converted" to that representation (in the weak sense discussed
above).

If the operands have both inherent representations in common, then
if the target representation is well- defined it selects the operation;
otherwise the signed operation is chosen.

If the operands have no representation in common and the target representation is
ilI- defined, the expression is in error.

In all cases, the inherent representation of the result is determined by the mapping
performed by the selected operation.

The unary operators require special treatment. Unary minus converts its argument to a
signed representation if necessary and produces a signed result. ASS is a null operation (With
warning message) on an operand with an unsigned representation, and it yields an unsigned
representation in any case. The target representation for the operand of LONG (or of an
implied widening operation) is unsigned.

Examples

Assume the following declarations:

i, j: INTEGER; m, n: CARDINAL; s, t: [O .. 77777B]; b: BOOLEAN

The statements on each of the following lines are equivalent.

i ... m+l1; i'" INTEGER[m +n] unsigned addition

i ... j +11; i'" n -tj; i ... j -HNTEGER[n] signed addition

i ... s-tl; i'" INTEGER[s] -HNTEGER[t] signed (overflow possible)

11 +- s-tl; 11 +- CARDINAL[s] -tcARDINAL[t]

S ... s- t; s'+- CARDINAL[s] - CARDINAL[t]

b ... s- t > 0: b +- INTEGER[s] - INTEGER[I] > 0

... - 111; i +- - INTEGEA[m]

unsigned (overflow impossible)

unsigned (overflow possible)

signed (overflow impossible)

+- m-tIl*U+n); i" INTEGER[Ill] + (INTEGER[11] *U -HNTEGER[Il]»

II ... m-tIl*U+fl); n'" III + (n*(cARDINAL[j] tn»

IVlesa 4.0 Compiler Update

to m +1l*(S +11); i to INTEGER[m-t(n*(cARoINAL[s] +tl»]

b to S IN [/-1 .. t+l]; b to INTEGER[s] IN [INTEGER[1-1] .. INTEGER[1+1]]

FOR s IN [- I-l .. t+l] ... , FOR s IN [CARDINAL[/-1].. CAROINAL[1+1]] ...

The following statements are incorrect because of representational ambiguities.

b +- i > n; b to i -til IN [s .. j]

SELECT i FROM III ~ ... ; I ~ ... ; ENDCASE

25

Both the following are legal and assign the same bit pattern to i, but the fi rst overflows if
m< n.

i to m- n; i +- IF m) = Il THEN m-Il ELSE - (n- m) .

Reference

Wirth, N. Oil the peaceful coexistence of integers and cardinals, Xerox PARe, 29 June
1977.

XEROX

Intcr- Officc MClllornnduln

To Mesa Users Date May 31, 1978

From Dave Redell, Dick Sweet Location Palo Alto

Subject Mesa 4.0 Process Update Organization SDD/SD

Filed on: [IRIS] (MESA) DOC) PROCESS40.BRAVO

Mesa provides language support for concurrent execution of multiple processes. This allows
programs that arc inherently parallel in nature to be clearly expressed. The language also
provides facilities for synchronizing such processes by means of entry to monitors and
waiting on condition variables.

The next section discusses the forking and joining of concurrent process. Later sections deal
with monitors, how their locks are specified, and how they are entered and exited. Condition
variables are discussed, along wi th their associated operations.

10.1. Concurent execution, FORK and JOIN.

The FORK and JOIN statements allow parallel execution of two procedures. Their use also
requires the new data type PROCESS. Since the Mesa process facilities provide considerable
flexibility, it is easiest to understand them by first looking at a simple example.

10.1. I. A Process Example

Consider an application with a front- end routine providing interactive composition and
editing of input lines:

Read Line: PROCEDURE [s: STRING] RETURNS [CARDINAL] =
BEGIN

c: CHARACTER;
s.l ellgth .. 0;
DO

c .. ReadChar[];
IF COlllrolCharacter[c] rHEN DoAciion[c]
ELSE AppendChar[s,c];
IF c =CR THEN RETURN [s.length];
ENDLOOP;

END;

The call

II +- Read Lille[buffer] ;

wil1 collect a line of user type- in up to a CR and put it in some string named buffer. Of

lVJcsa 4.0 Process Update 2

course, the caller cannot get anything else accomplished during the type- in of the line. If
there is anything else that needs doing, it can be done concurrently with the type- in by
forking to Read Line instead of calling it:

p to FORK Read Lillc[buffcr] ;

< concurrent computation)

n to JOIN p;

This allows the statements labeled <concurrent computation) to proceed in parallel with
user typing (clearly, the concurrent computation should not reference the string buffer).
The FORK construct spawns a new process whose result type matches that of Read Line.
(Read Line is referred to as the "root procedure" of the new process.)

p: PROCESS RETURNS [CARDINAL];

Later, the results are retrieved by the JOIN statement, which also deletes the spawned process.
Obviously, this must not occur until both processes are ready (Le. have reached the JOIN and
the RETURN, respectively); this rendevous is synchronized automatically by the process
facility.

Note that the types of the arguments and results of Read Lillc are always checked at compile
time, whether it is called or forked.

The one major difference between calling a proc;edure and forking to it is in the handling of
signals; see section lO.~.l for details.

10.1.2. Process Language COllstructs

The declaration of a PROCESS is similar to the declaration of a PROCEDURE, except that only
the return record is specified. The syntax is formally specified as follows:

TypeConst ructo r .. - ... I ProcessTC

ProcessTC .. - PROCESS RetumsClause

RetumsClause .. - empty I RETURNS ResultList from sec. 5.1.

ResultList .. - FieldList from sec. 5.1.

Suppose that f is a procedure and p a process. In order to fork f and assign the resulting
process to p, the RetumClause of f and that of p must be compatible, as described in sec 5.2.

The syntax for the FORK and JOIN statements is straightforward:

Statement .. -... I JoinCall

Expression .. -... I ForkCall I JoinCall

ForkCall

JoinCall

Call

FORK Call

JOIN Call

(see sections 5.4 and 8.2.1)

The ForkCall always returns a value (of type PROCESS) and thus a FORK cannot stand atone as
a statement. Unlike a procedure call, which returns a RECORD, the value of the FORK cannot
be discarded by writing an empty extractor. The action specified by the FORK is to spawn a

Mesa 4.0 Process Upd~lte 3

process parallel to the current one, and to begin it exec~lting the named procedure.

The JoinCali appears as either a statement or an expression, depending upon whether or not
the process being joined has an empty RetumsClause. It has the following meaning: When
the forked procedure has executed a RETURN and the JOIN is executed (in either order),

the returning process is deleted, and

the joining process receives the results, and continues execution.

A catchphrase can be attached to either a FORK or JOIN by specifying it in the Call. Note,
nowever, that such a catchphrase does not catch signals incurred during the execution of the
procedure; sec section 10.5.1 for further details.

There arc several other important similarities with normal procedure calls which arc worth
noting:

The types of all arguments and results arc checked at compile time.

There is no intrinsic rule against multiple activations (calls and/or forks) of the
same procedure coexisting at once. Of course, it is always possible to write
procedures which will work incorrectly if used in this way, but the mechanism itself
does not prohibit such usc.

One expected pattern of usage of the above mechanism is to place a matching FORK/JOIN pair
at the beginning and end of a single textual unit (Le. procedure, compound statement, etc.) so
that the computation within the textual unit occurs in parallel with that of the spawned
process. This style is encouraged, bu.t is nol mandatory; in fact, the matching FORK and ·JOIN
need not even be done by the same process. Care must be taken, of course, to insure that
each spawned process is joined only once, since the result of joining an already deleted
process is undefined. Note that the spawned process always begins and ends its life in the
same textual unit (Le. the target procedure of the FORK).

While many processes will tend to follow the FORK/JOIN paradigm, there will be others whose
role is better cast as continuing provision of services, rather than one- time calculation of
results. Such a "detached" process· is never joined. If its Ii fetime is bounded at all, its
deletion is a private matter, since it involves neither synchronization nor delivery of results.
No language features are required for this operation; sec the runtime documentation for the
description of the system procedure provided for detaching a process.

10.2. Monitors

Generally, when two or more processes are cooperating, they need to interact in more
complicated ways than simply forking and joining. Some more general mechanism is needed
to al10w orderly, synchronized interaction among processes. The interprocess synchronization
mechanism provided in Mesa is a variant of mOllilors adapted from the work of Hoare,
Brinch Hansen, and Dijkstra. The underlying view is that interaction among processes always
reduces to carefully synchronized access to shared data, and that a proper vehicle for this
interaction is one which unifies:

- the synchronization

- the shared data

- the body of code which performs the accesses

IVlcs~\ 4.0 Process Update 4

The Mesa monitor facility allows considerable flexibility in its lise. Before getting into the
details, let LIS first look at a slightly over- simplified description of the mechanism and a
simple example. The remainder of this section deals with the basics of monitors (more
complex uses arc described in section lOA); WAIT and NOTIFY are described in section 10.3.

10.2.1. All overview of !v! ollilors

A monitor is a module instance. It thus has its own data in its global frame, and its own
procedures for accessing that data. Some of the procedures arc public, allowing calls into the
monitor froni outside. Obviously, conflicts could arise if two processes were executing in the
same monitor at the same time. To prevent this, a monitor lock is used for 'mutual exclusion
(Le. to insure that only one process may be in each monito~ at anyone time). A call into a
monitor (to an elltry procedure) implicitly acquires its lock (waiting if necessary), and
returning from the monitor releases it. The monitor lock serves to guarantee the integrity of
the global data, which is expressed as the monitor invariant - - i.e an assertion defining what
constitutes a "good state" of the data for that particular monitor. It is the responsibility of
every entry procedure to restore the monitor invariant before returning, for the benefit of
the next process entering the monitor.

Things arc complicated slightly by the possibility that one process may enter the monitor and
find that the monitor data, while in a good state, nevertheless indicates that that process
cannot continue until some other process enters the monitor and improves the situation. The
WAIT operation allows the first process to release the monitor lock and await the desired
condition. The WAIT is performed on a condition variable, which is associated by agreement
with the actual condi tion needed. When another process makes that condition true, it will
perform a NOTIFY on the condition variable, and the waiting process will cont"inue from
where it left off (after reacquiring the lock, of course.)

For example, consider a fixed block storage allocator providing two entry procedures:
Allocate and Free. A caller of Allocate may find the free storage exhausted and be obliged
to wait until some caller of Free returns a block of storage.

Storage Allocator: MONITOR =
BEGIN

SlorageAvailable: CONDITION;

FreeList: POINTER;

Allocate: ENTRY PROCEDURE RETURNS [p: POINTER] =
BEGIN

WHILE FreeList = NIL DO

WAIT StorageAvailable
ENDLOOP;

p +- FreeList; FreeList +- p.next;
END;

Free: ENTRY PROCEDUf3E [p: POINTER] =
BEGIN

p.llext +- FreeList; FreeList ... p;
NOTIFY StorageAvailable
END;

END.

Mesa 4.0 Process UIHlatc 5

Note that it is clearly undesirable for two asynchonous processes to be executing in the
StorageAllocalor at the same time. The usc of entry procedures for Allocale and Free
assures mutual exclusion. The monitor lock is released while wAITing in Allocate in order to
allow Free to be called (this also allows other processes to call Allocate as well, leading to
several processes waiting on the queue for StorageAvailable).

10.2.2. AJollitor Locks

The most basic component of a monitor is its monitor lock. A monitor lock is a predefined
type, which can be thought of as a small record:

MONITORLOCK: TYPE =PRIVATE RECORD [locked: BOOLEAN, queue: Queue];

The monitor lock is private; its fields are never accessed explicitly by the Mesa programmer.
Instead, it is used implicitly to synchronize entry into the monitor code, thereby authorizing
access to the monitor data (and in some cases, other resources, such as 1/0 devices, etc.) The
next section describes several kinds of monitors which can be constructed from this basic
mechanism. In all of these, the idea is the same: during entry to a monitor, it is necessary to
acquire the monitor lock by:

1. waiting (in the queue) until: locked = FALSE,

2. setting: locked" TRUE.

10.2.3. Declaring monitor modules, ENTRY and INTERNAL procedures

In addition to a collection of data and an associated lock, a monitor contains a set of
procedure that do operations on the data. Monitor modules are declared much like program
or definitions modules; for example:

Jl: MONITOR [arguments] =
BEGIN

END.

The procedures in a monitor module are of three kinds:

Entry procedures

Internal procedures

Ex ternal procedures

Every monitor has one or more entry procedures; these acquire the monitor lock when called,
and are declared as:

P: ENTRY PROCEDURE [arguments] - ...

The entry procedures will usually comprise the set of public procedures visible to clients of
the monitor module. (There are some situations in which this is not the case; see external
procedures, below). The usual Mesa def,iult rules for PUBLIC and PRIVATE procedures apply.

Many monitors wilt also have illternal procedures: common routines shared among the

Mesa 4.0 Process Update 6

several entry procedures. These execute with the monitor lock held, and may thus freely
access the monitor data (including condition variables) as liecessary. Internal procedures
should be private, since direct calls to them from outside the monitor would bypass the
acquisition of the lock (for monitors implemented as multiple modules, this is not quite
right; see section lOA, below). internal procedures can be called only from an entry
procedure or another internal procedure. They are declared as follows:

Q: INTERNAL PROCEDURE [arguments] = ...
The attributes ENTRY or INTERNAL may be specified on a procedure only in a monitor module.
Section 10.2,4 describes how one declares an interface for a monitor.

Some monitor modules may wish to have external procedures. These are declared as normal
non- monitor procedures:

R: INTERNAL PROCEDURE [arguments] - ...

Such procedures are logically outside the monitor, but are declared within the same module
for reasons of logical packaging. For example, a public external procedure might do some
preliminary processing and then make repeated calls into the monitor proper (via a private
entry procedure) before returning to its client. Being outside the monitor, an external
procedure must not reference any monitor data (including condition variables), nor call any
internal procedures. The compiler checks for calls to internal procedures and usage of the
condition variable operations (WAIT, NOTIFY, etc.) within external procedures, but docs not
check for accesses to monitor data.

A fine point:

Actually. unchanging read- only global variables may be accessed by external procedures: it is changeable
monitor data that is strictly off-limits.

Generally speaking, a chain of procedure calls involving a monitor module has the general
form:

Client procedure - - outside module
.J.

External procedure(s) - - inside module but outside monitor
.J.

Entry procedure - - inside monitor
.J.

Internal procedure(s) - - inside monitor

Any deviation from this pattern is likely to be a mistake. A useful technique to avoid bugs
and increase the readibility of a monitor module is to structure the source text in the
corresponding order:

A!: MONITOR =
BEGIN

< External procedures>
< Entry procedures>
< Internal procedures>
< Initialization (main- body) code>
END.

Mesa 4.0 Process Update 7

/ 0.2.4. Illlerfaces to mOllitors

In Mesa, the attributes ENTRY and INTERNAL are associated with a procedure's body, not with
its type. Thus they can not be specified ina DEFINITIONS module. Typically, internal
procedures are not exported anyway, although they may be for a multi- module monitor (see
section 10.4.4). In fact, the compiler will issue a warning when the combination PUBLIC

INTERNAL occurs.

From the client side of an interface, a monitor appears to be a normal program module,
hence the keywords MONITOR and ENTRY do not appear. For example, a monitor Al with entry
procedures P and Q might appear as:

!vI Defs: DEFINITIONS =
BEGIN

IvI: PROGRAM [arguments];
P, Q: PROCEDURE [arguments] RETURNS [results];

END.

/0.2.5. Interactions of processes and monitors

One interaction should be noted between the process spawning and monitor mechanisms as
defined so far. If a process executing within a monitor forked to an internal procedure of
the same monitor, the result would be two processes inside the monitor at the same time,
which is the exact situation that monitors are supposed to avoid. The following rule is
therefore enforced:

A FORK may have as its target any procedure except an internal procedure of a
monitor.

A fine point:

In the case of a multi- module monitor (see section 10.4.4) calls to other monitor procedures through an
interface cannot be checked for the INTERNAL attribute. since this information is not available in the
interface (sec section 10.2.4).

10.3. Condition Variables

Condition variables are declared as:

c: CONDITION;

The content of a condition variable is private to the process mechanism; condition variables
may be accessed only via the operations defined below. It is important to note that it is the
condition variable which is the ba"sic construct; a condition (Le. the contents of a condition
variable) should Ilot itself be thought of as a meaningful object; it may flot be assigned to a
condition variable, passed as a parameter, etc.

/0.3.1. Wait, Notify, and Broadcast

A process executing in a monitor may find some condition of the monitor data which forces
it to wait until another process enters the monitor and improves the situation. This can be
accoll1 plished usi ng a condition variable, and the th ree basic operations: WAIT, NOTIFY, and

Mesa 4.0 Process Update

BROADCAST, defined by the following syntax:

Statement

WaitStmt .

NotifyStmt

... I WaitStmt I NotifyStmt

WAIT Variable OptCatchPhrase

NOTIFY Variable I BROADCAST Variable

8

A condition variaple c is always associated with some Boolean expression describing a desired
state of the monitor data, yielding the general pattern:

Process waiting for condition:

WHILE ,."SooleanExpression DO
WAIT c
ENDLOOP;

Process making condition true:

make BooleanExpression true;
NOTIFY c;

i.e. as side effect of modi fying global data

Consider the storage allocator example from section 10.2.1. In this case, the desired.
BooleanExpression is "Free List # NIL". There are several important points regarding WAIT
and NOTIFY, some of which are illustrated by that example:

WAIT always releases the lock while waiting, in order to allow entry by other processes,
including the process which will do the NOTIFY (e.g. Allocate must not lock out the
caller of Free while waiting, or a deadlock will result). Thus, the programmer is
always obliged to restore the monitor invariant (return the monitor data to a "good.
state") before doing a WAIT. .

NOTIFY, on the other hand, retains the lock, and may thus be invoked without restoring
the invariant; the monitor data may be left in in an arbitrary state, so long as the
invariant is restored before the next time the lock is released (by exiting an entry
procedure, for example).

A NOTIFY di rected to a condi tion variable on which no one is wai ting is simply
discarded. Moreover, the built- in test for this case is more efficient than any explicit
test that the programmer could make to avoid doing the extra NOTIFY. (Thus, in the
example above, Free always does a NOTIFY, without attempting to determine if it was
actually needed.)

Each WAIT must be embedded in a loop checking the corresponding condition. (E.g.
Allocate, upon being notified of the StorageAvailable condition, still loops back and
tests again to insure that the freelist is actually 110n- empty.) This rechecking is
necessary because the condition. even if true when the NOTIFY is done, may become
false again by the time the awakened process gets to run. (Even though the freelist is
always non- empty when Free does its NOTIFY, a th i rd process could have called
Allocate and emptied the freelist before the waiting process got a chance to inspect
it.)

Given that a process awakening from a WAIT must be careful to recheck its desired
condition, the process doing the NOTIFY can be somewhat more casual about insuring
that the condition is actually true when it docs the NOTIFY. This leads to the notion

Mesa 4.0 Process Updnte 9

of a covering condition variable, which is notified whenever the condition desired by
the wai ling process is likely to be true; this approach i"s useful if the expected cost of
false alarms (Le. extra wakeups that test the condition and wait again) is lower than
the cost of having the notifier always know precisely what the waiter is wailing for.

The last two points arc somewhat subtle, but quite important; condition variables in Mesa act
as suggestions that their associated Boolean expressions are likely to be true and should
therefore be rechecked. They do 1101 guarantee that a process, upon awakening from a WAIT,
will necessarily find the condition it expects. The programmer should never write code
which implicitly assumes the truth of some condition simply because a NOTIFY has occurred.

It is often the case that the user will wish to notify all processes waiting on a condition
variable. This can be done using:

BROADCAST c;

This operation can be used when several of the waiting processes should run, or when some
waiting process should run, but not necessarily the head of the queue.

Consider a variation of the SlorageAllocalor example:

Storage Allocator: MONITOR =
BEGIN

SlorageAvailable: CONDITION;

Allocale: ENTRY PROCEDURE [size: CARDINAL] RETURNS [p: POINTER] =
BEGIN

UNTIL < storage chunk of size words is available> DO
WAIT SlorageAvailable .
ENDLOOP;

p +- <remove chunk of size words>;
END;

Free: ENTRY PROCEDURE [p: POINTER, size: CARDINAL] =
BEGIN

<put back storage chunk of size words>

BROADCAST StorageAvailable
END;

END.

In this example, there may be several processes waiting on the queue of SlorageAvailable,
each with a different size requirement. It is not sufficient to simply NOTIFY the head of the
queue, since that process may not be satisfied with the newly available storage while another
waiting process might be. This is a case in which BROADCAST is needed instead of NOTIFY.

An important rule of thumb: il is always correct to use a BROADCAST. NOTIFY should be used
instead of BROADCAST if bOlh of the following conditions hold:

It is expected that there will typically be several processes waiting in the condition
variable queue (making it expensive to notify all of them with a BROADCAST), and

Mesa 4.0 Process Updute 10

It is known that the process at the head of the condition variable queue will always
be the right one to respond to the si tuation (making the multiple' noti fication
unnecessary);

If both of these conditions are met, a NOTIFY is sufficient, and may represent a significant
efficiency improvement over a BROADCAST. The allocator example in section 10.2.1 is a
situation in which NOTIFY is preferrable to BROADCAST.

As described above, the condition variable mechanism, and the programs lIsing it, are
intended to be robust in the face of "extra" NOTIFYS. The next section explores the opposite
problem: "missing" NOTIFYS.

/0.3.2. Timeouls

One potential problem with waiting on a condition variable is the possibility that one may
wait "too long." There are several ways this could happen, including:

- Hardware error (e.g. "lost interrupt")

- Software error (e.g. failure to do a NOTIFY)

- Communication error (e.g. lost packet)

To handle such situations, waits on condition variables are allowed to lime oul. This is done
by associating a timeout interval with each condition variable, which limits the delay that a
process can experience on a given WAIT operation. If no NOTIFY has arrived within this time
interval, one will be generated automatically. The Mesa language does not curren'tly have a
facility for setting the timeout field of a CONDITION variable. See the runtime documentation
for the description of the system procedure provided for this operation.

The waiting process will perceive this event as a normal NOTIFY. (Some programs may wish to
distinguish timeouts from normal NOTIFYS; this requires checking the time as well as the
desired condition on each iteration of the loop.)

No facility is provided to time out waits for monitor locks. This is because there would be,
in general, no way to recover from such a timeout.

10.4. More about Monitors

The next few sections deal with the full generality of monitor locks and monitors.

10.4.1. The LOCKS Clause

Normally, a monitor's data compdses its global variables, protected by the special global
variable LOCK: '

LOCK: MONITORLOCK;

This implicit variable is declared automatically in the global frame of any module whose
heading is of the form:

AI: MONITOR [arguments] IMPORTS • • • EXPORTS • • • =

Mesa 4.0 Process Update 11

In such a monitor it is generally not necessary to mention LOCK explicitly at all. For more
general use of the monitor mechanism, it is necessary to declare at the beginning of the
monitor module exactly which MONITORLOCK is to be acquired by entry procedures. This
declaration appears as part of the program type constructor that is at the head of the module.
The syntax is as follows:

ProgramTC

LocksClause

... I MONITOR Parameterlist RetumsClause LocksClause

empty I LOCKS Expression I
LOCKS Expression USING identifier: TypeSpecification

If the LocksClause is empty, entry to the monitor is controlled by the distinguished variable
LOCK (automatically supplied by the compiler). Otherwise, the LocksClause must designate
a variable of type MONITORLOCK, a record containing a distinguished lock field (see section
10.4.2), or a pointer that can be dereferenced (perhaps several times) to yield one of the
preceding. If a LocksClause is present, the compiler docs not generate the variable LOCK.

If the USING clause is absent, the lock is located by evaluating the LOCKS expression in the
context of the monitor's main body; Le., the monitor's parameters. imports, and global
variables are visible, as are any identifiers made accessible by a global OPEN. Evaluation
occurs upon entry to, and again upon exit from, the entry procedures (and for any WAITS in
entry or internal procedures). The location of the designated lock can thus be affected by .
assignments within the procedure to variables in the LOCKS expression. To avoid disaster, it
is essential that each reevaluation yield a designator of the same MONITORLOCK. This case is
described further in section 10.4.4.

If the USING clause is present, the lock is located in the followi"ng way: every entry or internal
procedure must have a parameter with the saine identifier and a compatible type as that
specified in the USING Clause. The occurrences of that identifier in the LOCKS clause are.
bound to that procedure parameter in every entry procedure (and internal procedure doing a
WAIT). The same care is necessary with respect to reevaluation; to emphasize this, the
distinguished argument is treated as a read- only value within the body of the procedure. See
section 1004.5 for further details.

10.4.2. Alonitored Records

For situations in which the monitor data cannot simply be the global variables of the
monitor module, a monitored record can be used:

r: MONITORED RECORD [X: INTEGER, •••];

A monitored record is a normal Mesa record, except that it contains an automatically
declared field of type MONITORLOCK. As usual, the monitor lock is used implicitly to
synchronize entry into the monitor code, which may then access the other fields in the
monitored record. The fields of the monitored record must not be accessed except from
within a monitor which first acquires its lock. In analogy with the global variable case, the
monitor lock field in a monitored record is given the special name LOCK; generally, it need
not be referred to explicitly (except during initialization; sec section 10.6).

A fine poi nt:

A more general form of monitor lock declaration is discussed in section 10.4.6

CAUTION: If a monitored record is to be passed around (e.g. as an argument to a procedure)
this should always be done by reference usi ng a POINTER TO MONITORED RECORD. Copying a

MCS~l 4.0 Process Update 12

monitored record (e.g. passing it by value) will generally. lead to chaos.

10.4.3. Alonitors and module instances

Even when all the procedures of a monitor are in one module, it is not quite correct to think
of the module and the monitor as identica1. For one thing, a monitor module, like an
ordinary program module, may have several instances. In the most straightforward case, each
instance constitutes a separate monitor. More generally, through the use of monitored
records, the number of monitors may be larger or smaller than the number of instances of
the correspondi ng module(s). The crucial observation is that in all cases:

There is a one-to- one correspondence between monitors and monitor locks.

The generalization of monitors through the use of monitored records tends to follow one of
two patterns:

Alulti- module monitors, in which several module instances implement a single
monitor.

Object monitors, in which a single module instance implements several monitors.

A fine point:

These two patterns are not mutually exclusive; multi- module object monitors are possible, and may
occasionally prove necessary.

10.4.4. Multi-module monitors

In . implementing a monitor, the most obvious approach is to package all the data and
procedures of the monitor within a single modllle instance ·(if there are mUltiple instances of
such a module, they constitute separate monitors and share nothing except code.) While this
will doubtless be the most common technique, the monitor may grow too large to be treated
asa si ngle module.

Typically, this leads to multiple modules. In this case the mechanics of constructing the
monitor are changed somewhat. There must be a central location that contains the monitor
lock for the monitor implemented by the multiple modules. This can be done either by
using a MONITORED RECORD or by choosing one of the modules to be the "root" of the
monitor. Consider the following example:

RigId ollRoot: MONITOR IMPORTS ••• EXPORTS ••• =
BEGIN

mOllitorDatuml: .. .
monitorDatum2: .. .

pI: PUBLIC ENTRY PROCEDURE •••

END.

/Jig A! ollA: MONITOR

LOCKS rool could equivalently say root. LOCK
IMPORTS ro()l: IJigA'/OIII?()ot ... EXPORTS ••• =
BEGIN

Mesa 4.0 Process Update

p2: PUBLIC ENTRY PROCEDURE •••

x .- rool.lIlollilorDalumI; - - access the protected data of the monitor

END.

BigNlollJJ: MONITOR

LOCKS root
IMPORTS root: BigA! on Root ... EXPORTS ••• =
BEGIN OPEN root;

p3: PUBLIC ENTRY PROCEDURE • • •

monitorDa tum2 +- ••• , access the protected data via an OPEN

END.

13

The monitor JJigMoll is implemented by three modules. The modules BigAlollA and
BigAlonlJ have a LOCKS clause to speci fy the location of the monitor lock: in this case, the
distinguished variable LOCK in BigA1ollRool. When any of the entry procedures pI, p2, or p3
is called, this lock is acquired (waiting if necessary), and is released upon returning. The
reader can verify that no two independent processes can be in the monitor at the same time.

Another means of implementing multi- module monitors is by means of a MONITORED
RECORD. Use of OPEN allows the fields of the record to be referenced without qualification.
Such a monitor is written as:

MOllitorData: TYPE =MONITORED RECORD [X: INTEGER, •••];

AlonA: MONITOR [pm: POINTER TO /lJ/ol1itorData]
LOCKS pm
IMPORTS •••

EXPORTS ..• =
BEGIN OPEN pm;
P: ENTRY PROCEDURE' [. ..] =

BEGIN

x +- x+l; - - access to a monitor variable

END;

END.

The LOCKS clause in the heading of this module (and each other module of this monitor)
leads to a MONITORED RECORD. Of course, in all such multi- module monitors, the LOCKS

clause will involve one or more levels of indirection (POINTER TO MONITORED RECORD, etc.)
since passing a monitor lock by value is not meaningful. As usual, Mesa will provide one or
more levels of automatic dereferencing as needed.

More generally, the target o'f the LOCKS clause can evaluate to a MONITORLOCK (Le. the
example above is equivalent to writing "LOCKS pm. LOCK').

CAUTION: The meaning of the target expression of the LOCKS clause lIlust not change between
the call to the entry procedure and the subsequent return (i.e. in the above example, changing
pill would invariably be an error) since this would lead to a different monitor lock being
released than was acquired, resulting in tolal chaos.

Mesa 4.0 Process Update 14

There are a few other issues regarding multi- module monitors which arise any time a tightly
coupled piece of Mesa code must be split into multiple module instances and then spliced
back together. For example:

If the lock is in a MONITORED RECORD, the monitor data will probably need to be in
the record also. While the global variables of such a multi- module monitor arc
covered by the monitor lock, they do /lot constitute monitor data in the normal sense
of· the term, since they are not uniformly visible to all the module instances.

Making the internal procedures of a multi- instance monitor PRIVATE will not work if
one instance wishes to call an internal procedure in another instance. (Such a call is
perfectly acceptable so long as the caller already holds the monitor lock). Instead, a
second interface (hidden from the clients) is needed as part of the "glue" holding the
monitor together. Note however, that Mesa cannot currently check that the procedure
being called through the interface is an internal one (sec section 10.2.4).

A fine point:

The compiler will complain about the PUBLIC INTERNAL procedures, but this is just a warning.

10.4.5. Object monitors

Some applications deal with objects, implemented, say, as records named by pointers. Often
it is necessary to insure that operations on these objects are atomic, i.e., once the operation
has begun, the object will not be otherwise referenced until the operation is finished. If a
module instance provides operations on some class of objects, the simplest way of
guaranteeing such atomicity is to make the m"odule instance a monitor. This is logically
correct, but if a high degree of concurrency is expected, it may create a bottleneck; it will
serialize the operations on all objects in the class, rather than on each of them individually.
If this problem is deemed serious, it can be solved by implementing the objects as monitored
records, thus effectively creating a separate monitor for each object. A single module
instance can implement the operations on all the objects as entry procedures, each taking as a
parameter the object to be locked. The locking of the parameter is specified in the lllodule
heading via a LocksClause with a USING clause. For example:

ObjectRecord: TYPE = MONITORED RECORD [.] ;

ObjectHandle: TYPE = POINTER TO ObjectRecord;

ObjectAf anager: MONITOR [arguments]
LOCKS object USING object: ObjectHandle
IMPORTS

EXPORTS ••• -
BEGIN

Operation: PUBLIC ENTRY PROCEDURE [object: ObjectHandle, ...] =
BEGIN

END;

END.

Note that the argument of USING is evaluated in the scope of the arguments to the entry
procedures. rather than the global scope of the module. In order for this to make sense, each
entry procedure, and each internal procedure that does a WAIT, must have an argument which

Mesa 4.0 Process Update 15

matches exactly the name and type specified in the USING subclause. All other components of
the argument of LOCKS are evaluated in the global scope, as usual.

As with the simpler form of LOCKS clause, the target may be a more complicated expression
and/ or may evaluate to a monitor lock rather than a monitored record. For example:

LOCKS p.q.LOCK USING p: POINTER TO ComplexRecord ...

CAUTION: Again, the meaning of the target expression of the LOCKS clause must not change
between the call to the entry procedure and the subsequent return. (I.e. in the above example,
changing p or p.q would almost surely be an error.)

CAUTION: It is important to note that global variables of object monitors are very dangerous;
they are not covered by a monitor lock, and thus do /lot constitute monitor data. If used at
all, they must be set only at module initialization time and must be read- only thereafter.

10.4.6. Explicit declaration of monitor locks

It is possible to declare monitor locks explicitly:

myLock: MONITORLOCK;

The normal cases of monitors and monitored records are essentially stylized uses of this
facility via the automatic declaration of LOCK, and should cover all but the most obscure
situations. For example, explicit delarations are useful in defining MACHINE DEPENDENT
monitored records. (Note that the· LOCKS clause becomes mandatory when an expliCitly
declared monitor lock is used.) More generally, explicit declarations allow the programmer
to .declare records with several monitor locks, declare locks in local frames, and so on; this
flexibility can lead to a wide variety of subtle bugs, hence use of the standard constructs
whenever possible is strongly advised.

10.5. Signals

10.5.1. Signals and Processes

Each process has its own call stack, down which signals propagate. If the signaller scans to
the bottom of the stack and finds no catch phrase, the signal is propagated to the debugger.
The important point to note is that forking to a procedure is different from calling it, in
that the forking creates a gap across which signals cannot propagate. This implies that in
practice, one cannot casually fork to any arbitrary procedure. The only suitable targets for
forks are procedures which catch any signals they incur, and which never generate any signals
of their own.

10.5.2. Signals alld Monitors

Signals require special attention within the body of an entry procedure. A signal raised with
the monitor lock held will propagate without releasing the lock and possibly invoke arbitrary
computations. For errors, this can be avoided by using the RETURN WITH ERROR construct.

RETURN WITH ERROR NoSuchObjcct;

Mesa 4.0 Process Update 16

Recall from Chapter 8 that this statement has the effect of removing the currently executing
frame from the call chain before issuing the ERROR. If the statement appears within an entry
procedure, the monitor lock is released before the error is started as well. Naturally, the
monitor invariant must be restored before this operation is performed.

For example, consider the following program segment:

Failure: ERROR [kind: CARDINAL] = CODE;

Proe: ENTRY PROCEDURE [. • .] RETURNS [el, e2: CHARACTER] =
BEGIN

ENABLE UNWIND ~ •

IF cond 1 THEN ERROR Failure[1] ;
IF eond 2 THEN RETURN WITH ERROR Fa if ure[2] ;

END;

Execution of the construct ERROR Failure[1] raises a signal that propagates until some catch
phrase specifics an exit. At that time, unwinding begins; the catch phrase for UNWIND in Proe
is executed and then Proe's frame is destroyed. Within an entry procedure such as Proe, the
lock is held until the unwind (and thus through unpredictable computation performed by
catch phrases).

Execution of the construct RETURN WITH ERROR Failure[2] releases the monitor lock and
destroys the frame of Proc before propagation of the signal begins. Note that the argument
list in this construct is determined by the declaration of Failure (not by Proe~s RETURNS
clause). The catch phrase for UNWIND is not executed in this case. The signal Failure is
actually raised by the system, after which Failure propagates as an ordinary error (beginning
with Proe's caIIer).

When the RETURN WITH ERROR construct is used from within an internal procedure, the
monitor lock is not released; RETURN WITH ERROR will release the monitor lock in precisely
those cases that RETURN will.

Another important issue regarding signals is the handling of UNWINDS; any entry procedure
that may experience an UNWIND must catch it and clean up the Inonitor data (restore the
monitor invariant):

P: ENTRY PROCEDURE [•••] =
BEGIN ENABLE UNWIND ~ BEGIN < restore invariant> END;

END;

At the end of the' UNWIND catchphrase, the compiler will append code to release the monitor
lock before the frame is unwound. It is important to note that a monitor always has at least
one cleanup task to perform when catching an UNWIND signal: the monitor lock must be
released. To this end, the programmer should be sure to place an enable- clause on the body
of every entry procedure that might evoke an UNWIND (directly or indirectly). If the monitor
invariant is already satisfied, no further cleanup need be specified, but the Ilull calc/z- phrase
must be wrillell so that the compiler will generate the code to unlock the monitor:

BEGIN ENABLE UNWIND => NULL;

Mesa 4.0 Process Update 17

This should be omitted only when it is certain that no UNWINDS can occur.

Another point is that signals caught by the OptCatchPhrase of a WAIT operation should be
thought of as occurring after reacquisition of the monitor lock. Thus, like all other monitor
code, catch phrases within a monitor are always executed with the monitor lock held.

10.6. Initialization

When a new monitor comes into existence, its monitor data will generally need to be set to
some appropriate initial values; in particular, the monitor lock and any condition variables
must be initialized. As usual, Mesa takes responsibility for initializing the simple comnlon
cases; for the cases not handled automatically, it is the responsibility of the programmer to
provide appropriate initialization code, and to arrange that it be executed at the proper time.
The two types of initialization apply in the following situations:

Monitor data in global variables can be initialized using the normal Mesa initial
value constructs in declarations. Monitor locks and condition variables in the global
frame will also be initialized automatically (although in this case, the programmer
does not write any explicit initial value in the declaration).

Monitor data in records must be initialized by the programmer. System procedures
must be used to initialize the monitor lock and condition variables. See the runtime
documentation for the descriptions of appropriate procedures.

A fine point:

If a variable containing a record is declared in a frame. it is normally possible to initialize it
in the dccl<iration (i.e. using a constructor as the initial value); however, this docs not apply if
the record contains monitor locks or condition variables. which must be initialized via calls to
system procedures.

Since initialization code modifies the monitor data, it must have exclusive access to it. The
programmer should insure this by arranging that the monitor not be called by its client
processes until it is ready for use.

XEROX

Inter- Office Memorandum

To Mesa Users Date May 31, 1978

From John Wick Location Palo Alto

Subject Mesa 4.0 Binder Update Organization SDD/SD

Filed on: [IRIS] <MESA) DOC) BINDER40.BRAVO

This memo outlines changes made in the Mesa binder since the last release (October 17,
1977). (In addition, the list of change requests closed by Mesa 4.0 will appear as part of the
Software Release Description.)

Except for the internal BCD file format, there arc no known incompatabilities with the Mesa
3.0· binder. No changes to existing configuration descriptions are required; but because of

. the file format change, all configurations must be rebound.

If you are not concerned with the new features described in the major headings below, and
you want to get on with Mesa 4.0, skip the rest of this memo for now, and come back to it
later.

Code Packing

It is now possible to pack together the code for several modules intq a single segment. This
is useful for two reasons:

Since the code is a]]ocated an integral number of pages, there is some wasted space in
the last page ("breakage"). If several modules are combined into a single segment,
the breakage is amortized over all the modules, and there is less waste on the average.

All the modules will be brought into and out of memory together, as a unit; a
reference to any module in the pack will cause all the code to be brought in.
Modules which are tightly coupled dynamically are good candidates for packing (for
example, resident code should probably always be packed).

Of course, it is possible to "over pack" a configuration; the segments might become so large
that there will never be room in memory for more than one of them at a time (this should
remind you of an overlay system). Packing is a tradeoff. and should be used with caution.

Syntax

The segments are speci fied at the begi n n i ng of the con figuration by gi vi ng a list of the
modules which comprise each one. Any number of PACK statements may appear. The scope
of the packing specification is the whole configuration, and not subconfigurations or
individual module instances, because there is at most one copy of a module's code in any
con figuration (i f . all goes well).

lVlesa 4.0 Binder Update

ConfigDescription :: = Directory Pacl<ing Configuration I

Packing II - empty I PackSeries ;

PackSeries

PackList

PackList I PackSeries ; PackList

PACK IdList

2

Each PackList defines a single segment; the code for all the modules in the IdList will be
packed into it. The identifiers in the IdList mllst refer to modules in the configuration, and
not to module instances; it is the code and not the global frames that are being packed (the
frames are always packed when they are allocated by the loader).

It is illegal to specify the same module in more than one PackList. Even though there may
be multiple instances of the module (Le., mu1tiple global frames) in the configuration, the
code is shared by all of them, and therefore can only appear in one pack.

Finally, it is perfectly fine to reach inside a previously bound configuration that is being
instantiated and single out some or all of its modules for packing. Of course, you must know
something about the structure of that configuration in order to do this.

Restrictions

Obviously, the PACK statements apply only if the code is being moved to the output file;
otherwise, the pack lists are ignored (and no warning message is given). This allows the
programmer to'debug the configuration without shuffling the code from file to file, thereby
saving time. When making the final version, the packing can be effected with a binder
switch, without having to modify the source of the configuration descriptio'n.

Once some modules have been packed together, they cannot be taken apart and repacked
with other Inodules later on, when they arc bound into some other configuration.

Fine point:

If a previously bound configuration contains a pack. referencing any module of the pack gets the whole
thing. So it is possible to pack a module and a pack together, or even to pack two packs. It is never
possible to unpack a pack.

In general, code packing should be specified only to the extent that no unpacking will ever
be desired. Once the packing is done, it can't be undone, unless you start over with the
individual modules.

Exterunl Links

In previous Mesa systems, links to the externals referenced by a program (imported
procedures, signals, errors, frames, and programs) were always stored in the module's global
frame. This allows each instance of a module to be bound differently, and it allows binding
to be done at runtime without modification of the module's, code segment. However, it has
two drawbacks:

The links are only referenced by the module's code, and are therefore not needed
when the code is swapped out. Hence, the links logically belong in the code segment.

If two instances of a module are bound identical1y (the usual case), the Jinks must be
stored twice.

IVlcsa 4.0 Bindcr Update 3

Fine Point:

To determine the amount of space required for external links, see the compiler's typescript
file. Each link occupies one word.

The Mesa 4.0 binder therefore optionally places links in the code segment. This option is
enabled by constructs in the configuration language, and is further controlled by binder and
loader command modifiers (switches).

Syntax

For each component of a configuration, the link location is specified using the LINKS

construct defined below. The default is frame links, as in Mesa 3.0.

Links :: = empty I LINKS : CODE I LINKS : FRAME

A link specification can optionally be attached to each instantiation of a module, overriding
the current default, so that the link location can be different for each instance.

CRightSide Item Links I Item [] Links I Item [IdList] Links

Alternately, the link option can be specified in the configuration header. This merely'
changes the default option for the configuration; it will apply to all components (including
nested configurations) unless it is explicitly overridden.

CHead :: = CONFIGURATION Links Imports CExports ControlClause

This construction works. much like the PUBLIC i PRIVATE options in Mesa, and it nests in the
same way. A link option attached to a configuration changes the default for all components
within it, but that default can be overriden for a particular module (or nested configuration)
by specifying a di fferent link option.

Restrictions

This scheme has the consequence that, if a module with code links has multiple instances,
each instance must be bound the same. For example, it is usually not meaningful to specify
code links if the code is shared by frames residing in several different Main Data Spaces.

As with code packing, the code links option takes effect only when the code is being moved
to the output file. At this point, the binder will make room for the links as it copies the
code if any module sharing that code has requested code links. Again, this allows a
programmer to debug without the expense of moving the code (using frame links), and then
to effect the code links option with a binder switch, without changing the source of the
con figuration description.

Fine point:

Once space for code links has been added to a configuration. it cannot be undone by a tater binding.
On the other hand. space for code links can always be added to a (previously bound) configuration,
even if it did not. specify code links in its description.

Using code links has one drawback: it slows down the binding and loading process, as the
code must be swapped in and rewritten. 'The binder must make room in the code segment
for the links, as described above. And because the loader resolves imports of previously
loaded modules, as well as the imports of the module being loaded, it may have to swap in

Mesa 4.0 Hinder Update 4

(and perhaps update and swapout) the code segment for every module in the system.

Fine point:

In an experiment. it took about 2.5 seconds to load a medium size configuration (Mesa itself) with
frame links (this includes a fixed overhead of about l.5 seconds for a directory search). With code
links. factoring out the fixed overhead, it was almost eight times longer (but it still took only nine
seconds).

Finally, the loader will not automatically attempt to use code links, even if the space is
available in the code segment. A loader switch ("1") must be used to effect this option.

Context Switching

The command line switch IR (for run) is used to specify that the Binder should run some
other program rather than returni ng to the Alto Executive. Both ".image" and ".run" files
may be specified. If there is no explicit extension, ".image" is assumed. Any switches after
the R and any other text remaining in the command line after the file with the IR switch
will be copied to Com.Cm for inspection by the new program.

Examples:

"Binder SomeConfig/g Mesa/r SomeConfig" will bind SomeConfig and then run
Mesa.image as if you had typed "Mesa SomcConfig".

"Binder SomcConfig/g Mesa/rd OtherConfig/-s SomeConfig" will bind SomeConfig
and then run Mesa.image as if you had typed "Mesal d OtherConfigl - s SomeConfig"

"Binder SomcConfig/g Ftp.run/r Store SomcConfig.bcd" will bind SomeConfig and
then run Ftp.run as if you had typed "Ftp.ru!1 Store SomeConfig.bcd"

Fine points:

The last specification before the file with the IR switch must have the /G (go) switch to indicate the
end of the previous command ..

You can run Bravo using the IR switch, but the current version (7.1) will not correctly find switches
or arguments on the command line.

Error Messages

The binder's error messages have been improved substantially. Each message includes the
corresponding source line of the configuration description (if available), and more
information from the data base is available for most common errors.

Fatal errors arc now reported in a fashion similar to the compiler; the signal and message
arc given in octal, and should be included in any change request reporting a fatal binder
error.

Distribution:
Mesa Users
Mesa Group

XEROX

Inter- Office Meriloranduln

To Mesa Users Date May 31, 1978

From John Wick Location Palo Alto

Subject Mesa 4.0 System Update Organization SODISD

Filed on: [IRIS] < MESA) DOC) SYSTEM40.BRAVO

This memo outlines changes made in the Mesa system code since the last release (October 17,
1977). It also dicusses a number of internal changes made in the system and the microcode;
see also the Mesa 4.0 Microcode Update. (In addition, the list of change requests closed by
Mesa 4.0 will appear as part of the Software Release Description.)

External Interfaces

Names in square brackets refer to sections of the Mesa System Documentatioll which has
also been updated. More details can be found there and in other documentation
accompanying this release.

Alto Reserved Locations

Mesa software now conforms to the most recent allocation of Alto reserved locations (Alto:
A Personal Computer System. Hardware A1allua!, February, 1978, Appendix H). The o"nly
page one location reserved by Mesa is the disaster flag (location 456B).

Basic Mesa

Basic Mesa has been reclassified as released software. To facilitate development of special
purpose systems, Basic Mesa no longer includes a keyboard handler; the procedure for
adding one is described in the documentation on the Keyboard Package. [Section 3]

CheckPoint/ Restart

Procedures have been added for writing checkpoint image files, and the bootstrap loader has
been modified to load them. Checkpoint files contain only the data (so creating them and
loading them is fast); unlike Makelmage, MakeCheckPoint does not copy code or any other
files to the image file. Note this means that none of the files referenced by the checkpoint
can be updated or modified in any way. [Image Files]

Code Links

The loader has been extended to optionally write external links in the code rather than the
global frame (assuming code· links were specified in the configuration description). To
effect this option, the loader II switch must be used. Note that if a module calls for code
links, loading it will be slower, as the code segment must be swapped in and rewritten. To
decrease resident storage requirements, all standard Mesa systems are configured with links
in the code. [Modules]

Mesa 4.0 System Upd~lte 2

COil vert

Due to extremely limited microcode space, the convert instruction is no longer part of the
Mesa instruction set. It can be simulated with BitBIt (see the system display package).
[Display]

Debugger Call

A method of invoking the debugger explicitly, without generating a signal, is now available;
it causes minimal disruption of the current state of the debuggee. The inline CallDebugger
is defined in MiscDefs. [Miscellaneous]

Deleting Configurations

The procedure UnNewConfig is now available for unloading a configuration from a running
system. The configuration's global frames are deallocated and its code segments are released.
In addition, all existing modules are checked for bindings to the configuration being
unloaded. [Modules]

Display Package

A smaller display package, similar to the BcpI version, is now standard. It supports a simple
display oriented teletype-like interface and an optional typescript file (see FontDefs and
DisplayDefs). The window package is available as a separate configuration (which is no
longer supported); see Window Package. [Display PackHge]

Fi! e Lengths

File lengths and file length hints are no longer kept as a permanent part of each file object.
A separate (and optional) length object is allocated only when the length of a file is
requested. Since length objects are not requii'ed for files containing code segments, this
substantially reduces the amount of resident object space required to handle a large number
of BeDS. [File Package]

Free Storage Package

The free storage package has been modified so that it protects each zone (including the
system supplied free storage heap) with a monitor. This enables several processes to share
the heap. [Storage Management]

Interrupts

For compatability with the new process mechanism, a Nova interrupt now causes a "naked
notify" to· one of sixteen condition variables. Pointers to these condition variables are
contained in fixed locations in page zero (see ProcessDefs). [Processes and Monitors]

Images

All symbol table references and options have been removed from the system, and the
interface to Makelmage has been changed to reflect this (the symbolsTolmage parameter has
been dropped). The image file fonnat has also been revised to support checkpoint/restart
files (see above). [Image Files]

KeyStreams

The keyboard routines have been revised to ulilize the new process mechanism; a condition
variable is notified when characters are available in the current keystream. The "idle
procedure" has been replaced by a WAIT on this condition variable. [Keyboard Package]

Mesa 4.0 Systcm Update 3

A1 emory Ivl allagemellt

A number of options have been added to the memory management and swapping facilities.
Unlocked read- only segments, such as fonts, are now swapped automatically (previously, this
applied only to code segments). The interface to swapping procedures has been expanded to
include an (optional) Alloclnfo parameter, which provides more information about how the
memory should be allocated. The new facilities are defined in AllocDefs; swap stratagies and
swapping procedures are now defined there. [Scgmcnt Packagc]

Pause to Debugger

A switch has been added to the NEW command which will invoke the debugger as soon as a
configuration has been loaded (in command line mode, before it is started). Also, holding
down the control- swat keys while an image file is loaded will now work correctly (the
debugger will be invoked as soon as possible). [Scction 4]

Process Structure

A new process mechanism which supports monitors and condition variables, WAITS and
NOTIFYS, and FORK and JOIN has been implemented. The BLOCK operation has been eliminated
(a Yield procedure is available). Note that several refinements (and some revisions) of the
original proposal (in the Pilot FUllctional Specification) have been made. A new chapter in
the A1esa Language Ivlallual provides complete documentation; additional facilities which
are not part of the language are described in the system documention (and ProcessDefs).
[Proccsscs and Monitors]

Warning: In general, facilities provided by the system are /1ot protected by monitors. Since
Pilot will be available soon, we have not redesigned and retrofitted the Alto/Mesa system to
support preemptive processes (other than simple interrupt routines, as before). Except for
the free storage package (see above), system facilities shared by more than one process must
be protected by a user supplied set of monitor entry procedures.

Ruil Irnage

A module is now available which will invoke a Mesa image file (or a Bcpl run file) from the
Mesa environment, without returning to the Alto Executive. Any Mesa subsystem which
supports command Ii ne input (e.g., the compiler or binder, or evel1' the Mesa system itself)
can be invoked considerably fastef using this facility. [Image Filcs]

StreamlO

To make instantiating multiple instances of this module easier, StreamlQ no longer takes
parameters specifying the input and output streams. Procedures are available which override
the default settings. [StrcamIO Package]

StringDefs

To facilitate conversion from binary to alphanumeric data, AppendNumber and other related
procedures have been added to StringDefs. WordsForString now expects a cardinal. Dcpl
strings now usc packed arrays. [String Package]

SystemDefs

A simplified interface to the new memory management facilities has been added in the form
of two additional procedures: AliocateResidentSegment and AllocateResidentPages. [Storage
Managcmcnt]

Trap Defs

Documentation on a number of system generated traps is now available in a new section of
the system document. Most traps are converted into signals of the same name: StartFault,
ControlFault, UnbounciProcedure. StackError, etc. [Tnll)s]

Mesa 4.0 System Update 4

UIlNew

This procedure no longer supports the option of addi ng the module's frame to the free
frame heap (it will be returned there only if it was allocated from there). Note that this
procedure does not check for other modules bound to the one being deleted. Beware 0/
d angling references! [lVlodules]

Unsigned Compare

The unsigned compare operation (usc) has been removed from InlineDefs. Use of the
appropriate signed or unsigned comparison operators should be controlled by the type of the
variables involved: CARDINAL (unsigned) or INTEGER (signed). See the Alesa Language Alanual
and the l\tlcsa 4.0 Compiler Update for more information. .

User I flter/ace

Modules to be loaded into the standard Mesa system (and Basic Mesa) can now be specified
on the command line (and in command files). A number of switches are available to
control loading options; these are described in the Alesa User's Handbook.

VlvlnotFree

The signal VMnotFree was inadvertently respelled (it used to be VMNotFree). [Segment
Package]

Window Package

The Mesa window package is no longer part of the standard Mesa system; it is available as a
separate configuration. WindEx replaces WManager for optional use in the debugger. The
definitions of BitBlt and Convert have been removed from RectangleDefs. Support for a
blinking cursor has been added. [Window Puckuge]

Internal Interfaces

The following changes are internal to the implementation and do not affect public
interfaces. They may affect performance and/or space requirements, however. For several
of these items, furthur information can be founded in the Mesa 4.0 lvlicrocod e Update.

Alto/ Alesa Aficrocode

The microcode has been completely rewritten to improve its execution speed. The major
changes are: 1) several instructions must now be aligned on word boundaries and, 2) certain
instructions (notably jumps) require the evaluation stack to be empty except for their
operands. (As a side effect of the reorganization, new opcode numbers have been assigned
to most instructions.) We have observed improvements in raw execution speed of 20- 50%.
depending on the dynamic instruction mix.

Alto File System

The hint in the DiskDescriptor con.taining the' number of free disk pages is now maintained
properly. The declarations describing Sys.Log have been deleted, since it is no longer
supported by the' Bcpl as (versions 14 or later).

Allo Time Standard

The time conversion package is now part of standard system. UnpackedTime and PackDT
have been extended to support GMT, time zones, and daylight savings time (for
compatability with Bcpl as versions 14 or greater).

Mesa 4.0 System Update 5

IJed Format

This structure has been revised to achieve a space reduction of about 10%. A segment table
and name table have been added, as well as support for packed code segments and code
links. Provision" for a source version stamp has also been included.

IJitBlt

BitBlts are now performed entirely in microcode, using the ROM subroutine. They are not
only faster, but interruptable as well. BitBItDefs now contains the interface to this
operation; it has been updated to include the extended memory option.

Cleanup Procedures

Adding a cleanup procedure must now specify the conditions under which the procedure
should be called. Several cleanup procedures are no longer called on swapping to and from
the debugger.

Warning: Since the interrupt key may preempt a process holding a monitor lock, cleanup
procedures must not attempt to enter any monitor. This severly restricts the operations that
can be safely performed by cleanup procedures.

Cod e Packing

All resident code now employs the packed code option implemented by the binder.

Code Segments

The format of code segments has been revised to accomodate the new options for handling
external links (storing them in the code and storing them backwards from the frame or code
base). Also note that when several modules arc-packed into the same code segment, only the
LR U bit of the first module is examined by the swapper. "

COlltrolDels

The declarations of control links and local and global frames now use overlaid variant
records. The AV, SO, and GFf have been preassigned constant values as in the PrincOps; the
REGISTER construct has been revised accordingly (sec also Trap Parameters). The assignment
of System Data indicies is now contained in SDOefs.

Descriptor Instructions

The descriptor instructions (OESCB and OESCBS) described in the PrincOps have been
implemented.

External Links

External links are now stored and indexed backwards from the global frame base (or code
base); this eliminates the "effective" minimum frame size overhead of eighteen. The total
number of external procedures, programs, signals, and errors per module must be less than
256.

Field Descriptors

The format of field descriptors has been revised to agree with the DO design. The read field
stack (RFS) and read field code (RFC) instructions have been implemented.

Frallle Allocation

The ALLoe and FREE instructions are now "implemented in microcode; thus the overhead for
large (greater than five word) parameter and result records has been drastically reduced.

Mesa 4.0 System Update 6

Global Frame Format

The global frame overhead has been reduced from ten to three words; all fields relating to
the old binding scheme have been eliminated (see also External Links and Alain Body
Procedure).

Kernel FUllction Calls

Several new kernel functions have been added as a result of other extensions (see SDDefs).
Most entries of public interest are now defined as inlines in definitions modules (e.g.
FrameDefs, LoaderDefs). Provision has been made for all of the traps defined in the
PrincOps.

Load State Format

A change in format has reduced the size of the load state substantially. The maximum
number of BCDS which can be loaded into a single image file is now about forty.

Long Integers

Addition, subtraction, and comparison of long (32- bit) integers are now implemented in
microcode. Multiplication and division are done by software (and are therefore slow).

!vI ain Body Procedure

The main body of a module is now executed in a separate local frame, instead of using the
global frame. This eliminates three words from the global frame overhead (the access link,
saved pc, and return link).

Nil Pointers

To enable conversion and comparison of both long and short values of null pointers, the
val.ue of NIL has been changed.

Novacode interface

To accomodate the implementation of the process opcodes in Nova code (and the removal
of block, convert, and bitblt), the interface to the Nova has been revised.

OSStaticDefs

The format of the OS statics region has been revised to reflect the changes in OS version 14
(see the Alto Operating System Reference ldanual).

Pair Instructions

A number of the pair instructions described in the PrincOps have been implemented on the
Alto (notably the RXLP, RILP, and RIGP families).

Processes and !vlollilors

Due to severe space limitations, all of the process/monitor opcodes (enter, wait, reenter,
notify, broadcast, exit, and requeue) are implemented in Nova code, and therefore are
considerably slower (relative to other instructions) than they will be on the DO.

Real Data Type

The compiler now generates KFCBS to perform real arithmetic. The so contains entries for
the following fJonling point operations: FA 00, FSUB, FMUL, FOIV, FCOMP, FIX, FLOAT. Note,
however, that no implementation of these operations is provided or planned.

lVIcsa 4.0 System Update 7

Realtime Clock

The low order ten realtime clock bits (maintained in a micro processor register) can now be
read by the programmer using the REGISTER construct. This feature was added in conjunction
with the program monitoring facilities (see X/er Traps).

Segment and File Objects

Descriptors for files and segments are now allocated from a single pool, rather than from
separate tables. This eliminates considerable breakage, at some cost in the speed of
enumeration procedures (which are performed rarely). As a consequence, objects are now
represented as true variant records (not computed or overlaid), and a number of procedures
take either data or file segments as parameters. .

Shared Code Segments

A bit has been added to the global frame which indicates if the code is shared by other
module instances. In the common case (a single instance of each module), this will
eliminate searches of the global frame table every time the code is swapped out.

Start Command

The Mesa Executive's Start command now FORKS to the module, running it as a separate
process. This insures that the executive will survive and continue to accept commands even
if the user's process is aborted.

Trap Parameters

To eliminate the possibility of clobbering the stack when (possibly nested) traps occur, all
trap parameters are now passed in registers (of the micro processor). They arc made
available to the trap routine using the REGISTER construct.

Uncaught Signals

The method of handling uncaught signals has been revised to accomodate the new process
mechanism. Each process no longer includes an instance of the debugger's "nub" as its root;
instead, a nub is spliced into the call stack dynamically when the uncaught signal occurs.

X/er Traps

A mechanism has been added which will optionally cause a trap routine to be invoked for
each XFER operation. In addition to performance monitoring, this facility is also useful for
finding a large class of bugs, especially clobbers (see TrapOefs).

Distribution:
Mesa Users
Mesa Group

XEROX

Inter .. Office Memorandunl

To Mesa Users Date May 31, 1978

From Roy Levi~ Location Palo Alto

Subject Mesa 4.0 Microcode Update Organization CSL

Filed on: [IRIS] < MESA) DOC) MICROCODE40.BRAVQ

This memo outli nes the differences in the (Alto) Mesa microcode for release 4.0. The DIS
Processor Principles of Operation [1] ("PrincOps") is scheduled to be revised soon, and
some of the changes indicated below will be incorporated in that revision. Others are
peculiar to the Alto implementation of Mesa and are indicated as such. This document is
only a summary of the changes in Mesa 4.0; additional details may be found in the
references cited at the end of this memo.

Definitions of New Notions

Two new instruction properties have been introduced in the Mesa 4.0 instruction set:

Alignment

An aligned 1- byte instruction must be the last significant byte in the word. Thus, if an
aligned, 1- byte instruction appears in an even byte posi tion, the microcode will ignore
the contents of the odd byte in the same word. An aligned 2- byte instruction must
have both bytes in the same memory word. An aligned 3- byte instruction consists of
an aligned 1- byte opcode followed by a word containing the a and P bytes. In this
case, the ex byte must be in the odd byte of the word following the opcode. In the 2-byte
case, padding is accomplished by use of the new instruction NOOP, which is discussed below.

!v! illimal slack

A minimal stack instruction expects its operands to be the only quantities on the stack,
and leaves the stack empty, except for any results it explicitly supplies.

These properties are peculiar to the Alto implementation of Mesa and will not be included
in the revision of the PrincOps.

Changes to the Instruction Set

Many of the changes in the Mesa 4.0 microcode bring the instruction set closer to the
PrincOps. In some cases, however, constraints imposed by the Alto architecture have
prevented an exact emulation of the PrincOps semantics. The following sections define the
di fferences between the Mesa 3.0 and 4.0 instruction sets, and relate those di fferences to the
PrincOps.

Mesa 4.0 lVlicrocode Update

Mesa 3.0 bylecodes not present ill Nfesa 4.0

LGS, SGS, LLS, SLS
LGDS, SGDS, LLDS, SLDS
WSDS

2

Space constraints in the Alto implementation have forced the elimination of these
bytecodes.

ADDL, ADDG
These instructions have been superseded by the PrincOps instructions LADRB and
GADRB (see below).

RXLO- 3, WXLO
RIGO- 3, \VIGO, WILO

These instructions have been superseded by the PrincOps instructions RXLP, WXLP,
RIGP, RILP, and WILP (see below). Note that RILO has been retained, because of its
high static frequency.

RILl- 3
Space constraints in the Alto implementation have forced the elimination of these
bytecodes. They will, however, remain in the PrincOps when it is revised. Note that
RILO has been retained in the Alto implementation.

Jumps
Mesa 4.0 has adopted byte distances for specifying jump targets. As· a result, the even
and odd byte forms of the Mesa 3.0 jump instructions have been elilninated, and -the
entire set of jumps revised to conform almost completely to the PrincOps. JIB and
JIW are the only Mesa 3.0 jumps that have been retained, though their semantics have
been modified to agree with the notion of byte distances. Details appear below.

GFCO-15, GFCB
The GFCn instructions have been uniformly replaced with EFCn instructions, which
have similar semantics but support destination links in either the global frame or the
code segment. This substitution will occur in the revision of the PrincOps as well.

CVT
. Space constraints in the Alto implementation have forced the elimination of CVT.

HLK
The Mesa 4.0 process machinery makes BLK obsolete, and it has been eliminated. It
will be eliminated in the revision of the PrincOps as well.

Mesa 4.0 bytecodes not present in Mesa 3.0

NOOP
Introduced to accommodate alignment requirements of the Alto implementation.
NOOP will not be incorporated in the PrincOps revision. See the section on
"Interrupts" for additional requirements affecting the execution of NOOP. Note: this
opcode is meaningful only when it appears in the odd byte of a word.

LA))I~B, GADRH

IVlesa 4.0 Microcode Update 3

Behave as described in [1], except:
Both are aligned illstructions.

This difference will not be included in the PrincOps revision.

ADDO!
Identical to ADD as described in [1], except:

ADDOI is a minimal stack instruction, assllming precisely 2 elements on the stack.

It is possible that ADDOI will be included in the PrincOps revision.

DADO, DSUB, DCOMP

DADD and DSUB behave as described in [1], except:
Both require minimal stack. .
No carry bit is left on stack above stack pointer.

DCOMP expects two double precision values on the stack. Call them A and B.
DCOMP performs: Sign[DSUB[A,B]]. Sign(x) = {-l if x(O, 0 if x=f>, +1 if x)O}. The
(single precision) result of the Sign is left on the stack. DCOMP has a minimal stack
requirement. DCOMP will probably be included in the PrincOps revision.

RXLP, WXLP
RILl>, RIGP, WILP

Behave exactly as described in [1].

ItFS, WFS
RFC

RFS and WFS are aligned, 1- byte instructions that expect the top word of the stack to
be an < a, {J> pair, with a in the left byte. RfS and WFS pop this word from the
stack, then behave exactly like RF and WF, respectively, using the a and {J values
obtained from the stack word.

RFC is an aligned, 3- byte instruction that is identical to RF in all respects except that
the code base register, C, is ad"ded to the computed address before the field is accessed.

All of these instructions use a new field descriptor format, which is described in the
following section under RF, WF, and WFS. All of these instructions will be included
in the PrincOps revision.

J2- ,)9, Jll, JW
Behave as described in [1], except:

J Band JW arc aligned instructions.
All jump distances are signed values, measured from the last byte of the jump

illstruction instead of the first (as in the PrillcOps).

These differences will not be included in the PrincOps revision.

JEQ2- 9, JEQU
,INE2- 9, JNEH

llehave as described in [1] ~ except:
J EQIJ and J N Ell are aligned instructions.
All jump targets are signed. PC- relative distances in bytes, measured from the

last byte of the jump illstruction instead of the first (as ill the PrincOps).

These differences will not be included in the PrincOps revision.

Mesa 4.0 Microcode Update

JLB, .IGEB, .JGB, ,JLEB
,lULB, ,JUGEB, .JUGB, ,JULEB
JZEQB, ,JZNEH

llehave as described in [1], except:
All are aliglled illstructiolls.

4

All jump targets are signed, PC- relative distances in bytes, measured from the
last byte of the jump instruction illstead of the first (as in the PrincOps).

These differences will not be included in the PrincOps revision.

DESCB, DESCBS

Behave as described in [1], except:
Both are aligned instructions.
The result left on the stack is (gfiword A 177B)+2*a+1. where gfiword is word 0
of the global frame used by the instruction (see the section all "Global Frame
Format". below).

The di fference in the result produced by these instructions will be included in the
PrincOps revision.

EFCO-15, El~CB
LLKU

EFCO-1S and EFC13 replace the GFCO-lS and GFCH instructions of Mesa 3.0. EFCn
behaves identically to Gl'''Cn except in the way the destination link is determined. To
locate the destination link, the microcode examines the low- order bit of the gfi word
(word 0) of the global frame. If this bit is 0, the destination link is taken from
location G- n-1, where G is the address of the current global frame. If the bit is 1. the
destination link is taken from location C- n-1, where C is the address of the current
code segment. EFCO-IS and EFC13 will p"replace GFCO-IS and GFCll in the PrincOps
revision. .

LLKB is an aligned, 2- byte instruction that computes a destination link in the same
way that EFCB does. Instead of using it as the destination of an Xfer, however, LLKB
simply pushes the destination link on the stack, and performs no additional actions
upon it. LLKB, with the alignment requirement dropped, will be included in the
PrincOps revision.

ME, MRE, lVIXW, lVIXD, NOTIFY, BCAST, R~:QUEUE

These are process- related opcodes, and are described separately below. All will be
included in the PrincOps revision.

Bytecodes whose semantics have changed from Mesa 3.0 to Mesa 4.0

LGDB, SGDB, LLDB, SLDB
LIW

Identical to Mesa 3.0, except:
All are aligned instructiolls.

This difference will not be included in the PrincOps. revision.

,JIB, JIW

Identical to Mesa 3.0, except:
Both are aligned instructions.
The jump target for .II B is all unsigncd distance in bytes, measured frol11 the last

byte of the J I JJ illstructioll- instcad of the first (as in the PrillcOps).

Nlesa 4.0 Microcode Update 5

The jump target for J IW is a signed distance ill byles, measured from the last
byte of the J I IY illstructioll illstead of the first (as in the PrillcOps).

These differences will not be included in the PrincOps revision.

ROB, WDn
WSB, \VSDB

Identical to Mesa 3.0, except:
All are aligned illstructions.

This difference will not be included in the PrincOps revision.

RSTR, WSTR

Identical to Mesa 3.0, except:
All are aligned illstructions.

This difference will not be included in the PrincOps revision.

RF, WF, WSF
Identical to Mesa 3.0, except:

All are aligned illstructions.
Field descriptor in f3 byte is (p,s>, where p =bits to the left of desired field and

s = bits in field minus I.

The difference in field descriptor format will be included in the PrincOps revision.

BITBLT
Identical to Mesa 3.0, except:

BITBLT is an aligned instruction.
BITBLT is a minimal sta"ck, 2- argument instruction.
The first argument to BITBLT is unchanged from Jvlesa 3.0; the second is a word

containing the value zero.
BITJ3LT may be interrupted and subsequently- restarted.

These differences are not relevant to the PrincOps revision.

DST, LST, LSTF
Identical to Mesa 3.0, except:

All are aligned instructions.
Only the active portion of the stack is saved or loaded (including 2 words above

the top of the stack).

Except for the alignment requirement, these differences will be included in the
PrincOps revision.

RU, WR
All a byte interpretations have changed - see the section on Trap Handlers and
Parameters, below.

These differences will not be included in the PrincOps revision.

Process Instructions and the Mesa/Nova Interface [4]

Entry points to the Mesa emulator

Three entry points are defined. Control is transferred to these entry points by means of the
Nova JMPRAM instruction. The addresses of lhese entry points are unchanged from Mesa
3.0, but some of. the necess~ry conditions at entry arc differcnt.

Mesa 4.0 Microcode Update

a) Entry point 'Mgo' (location 420B): Nova ACO must contain the address of a
process state vector. The emulator will load the process state [loom this
address, then perform a control transfer using the destination link at
<ACO> +11B and source link at <ACO> +12ll.

b) Entry point 'Minterpret' (location 400B): Mesa emulation continues using the
current state in the emulator's internal registers. It is the responsibility of the
invoker to ensure that the proper process state has been loaded.

c) Entry point 'S\VRET' (location 777B): Used only when the Mesa emulator
resides in ROMI. See Alto Hardware Manual, section 9.2.4.

Exits to Nova code

6

The Mesa emulator may cease execution and transfer control to the Nova emulator for one
of two reasons:

I} A pending interrupt must be serviced.

2} A bytecode whose actions are implemented by Nova code has been interpreted.

In both cases the Nova program counter is set to a fixed value (in page 0) before control is
passed to the Nova emulator. (In the second case, the PC value is different for each distinct
bytecode.) In addition, the following conditions hold:

a} Any parameters expected by the Nova code appear in consecutive ACs
beginning with ACO. Any Nova accumulator whose content is not explicitly
supplied by the microcode will have undefined contents. In particular, no
parameters are passed for a case 1 exit (pending interrupts). The microcode
does not interpret the values transferred to the Nova ACs.

b} The state of the current 'process has been dumped to a process state vector'
whose starting address is stored in main memory at location 'CurrentState'
(location 23B).

c) Unless a pending interrupt is being serviced (case 1), Nova interrupts have
been disabled.

d} Any results generated by the Nova code must be transferred to the saved
process state vector before the Mesa emulator is restarted. The emulator
supplies no explicit mechanism to the Nova code for returning results.

Nova dispatch vector

When the Nova emulator receives control, the PC reflects the intended action to be
performed. The Mesa emulator uses a dispa~ch vector beginning at 'NovaDVloc' (location
2513), and indexes it by the particular action required. The entries in the dispatch vector
may be any Nova instructions, but in most cases will be a JMP to a Nova program that
implements the desired semantics. The particular indices and relevant parameters passed are
gi ven by the following table:

Mesa 4.0 Microcode Update 7

Index Action Parml1eters

0 interrupt none
1 srop none

2-3 unused
4 ME ACO
5 MRE ACO, ACl
6 MXW ACO, AC1, AC2
7 MXD ACO

lOB NOTIFY ACO
I1B BCAST ACO
12B REQUEUE ACO, ACt, AC2

Global Franlc Format

The global frame overhead has been reduced to 3 words, which have the following contents:

(O)~

(0)+1

(0)+2

Xfer Traps

bits 0-8 contain the OFI,
bi ts 9-14 arc used by software,
bit 15 is the frame links/code links indicator.

is the code base (odd ~ swapped out, even ~ address of code segment).

not used by Mesa emulator microcode.

A mechanism to implement trapping of control transfers has been- implemented in Mesa 4.0.
It is described in detail in a separate document [8].

Interrupts

After any Xfer, regardless of the cause, the Mesa emulator guarantees that at least one
"useful" instruction will be executed. "Useful" means an instruction which is not a NOOP.
In Mesa 3.0, no padding instructions were necessary and thus every instruction was
considered "useful". In Mesa 4.0 this is no longer true, and this guarantee is needed to
preserve certain properties within trap handlers (see below).

Trap lIandlers and Paranlcters [7]

Mesa 4.0 trap handlers obtain their arguments by means of the RR and WR instructions.
Four internal registers have been assigned for trap parameters:

XTSreg: holds Xfer trap state (sec [8]).
XTPreg: holds Xfer trap parameters (see [8]).
ATPreg: holds allocation trap parameter.
OTPreg: holds parameters for all other traps.

Thus, Xfer traps use XTSreg and XTPreg, allocation traps use A TPreg, and code- swapped­
out and unbound procedure traps use OTPreg.

An additional constraint on trap handlers is that they cannot assume that interrupts have
been disabled by the microcode (this was true for some trap handlers in Mesa 3.0).
However, the microcode continues to guarantee that one instruction following a trap will be

Mesa 4.0 NIicrocode Upd~lte 8

executed before any i ntelTupts are taken. Therefore, if an IWDC i nstrllction is the first
instruction of a trap handler, no i 11 lerrupts wi II occur before the trap handler has had the
opportunity to obtain its parameter(s).

As a result of these changes, the a byte interpretations of RR and WR have been redefined.
The new meanings arc:

a

1
2
3
4
5
6
7

RR

woe
XTSreg
XTPreg
ATPreg
OTPreg
clock
code-base

WR

woe
XTSreg

(see below)

The clock value returned by RR6 is the low- order 16 bits of the Alto clock, regardless of the
model. Thus the format of this value will be different on the Alto I and Alto II.

Stack overflow and underflow are reported by the same trap mechanism used in Mesa 3.0,
but may not occur immediately after the instruction that caused the stack error. However,
the trap will occur before or during the next instruction that either manipulates the stack or
terminates a straight-line execution sequence.

A V, SD, and GFT

The addresses of these tables were stored in internal registers by the Mesa 3.0 emulator and
could be accessed and modified by RR and WR. In Mesa 4.0, fixed locations have been
established for each of these tables, as follows:

AV 1000B
so 1060B
GFT 1400B

References

[1]

[2]

[3]

[4]

Thacker, Chuck. OIS Processor Principles of Operation. Version 2.0, April 9, 1977.

Levin, Roy. Comparison of Old nnd New Alto/Mesa lVlicrocode. November 4, 1977.
Filed on [Maxc] < Levin> UCodeComparison.bravo.

Levin, Roy. Extensions to Alto/Mesa Microcode. November 7, 1977. Filed on
[Maxc] < Levin> UCodeExtensions.bravo. .

Levin, Roy. Mcsa/Nova Interface.
[Maxc] <Levin> MesaNovalnterface.bravo.

November 15, 1977. Filed on

[5] Levin, Roy. Incoll1f)atihilities in Alto/Mesa microcode, version 24. November 23,
1977. Filed on [Maxc] < Levin> Incompatibilities24.bravo.

[6] Levin. Roy.)4:xtcllsions to Alto/Mesa Microcode for version 26. December 5, 1977.
Filed on [Maxc) < Levin> UCodeExtensions26.bravo.

Mesa 4.0 Microcode Update 9

[7] Wick, John. Mcsa 4.0 microcodc (loosc cnds). fvlarch 14, 1978. Filed on
[Maxc] <Wick> MICR040.bravo.

[8] Levin, Roy. A Mcchanism for Monitoring Tnmsfcrs of Control in (Alto) Mesa.
March 29, 1978. Filed 011 [Ivy] <Levin> Mesa40> XferTrap.bravo.

Distribution
Mesa Users
Mesa Group

c: Belleville
Charnley
Lampson
Thacker

XEROX

Intcr- Officc MClllorandum

To Mesa Users Date May 31, 1978

From Barbara Koalkin Location Palo Alto

Subject Mesa 4.0 Debugger Update Organization SDD/SD

Filed on: [IRIS] <MESA>DOC>OEBUGGER40.BRAVO

This release of the Mesa debugger introduces many changes of interest and importance to all
Mesa programmers. The purpose of this memo is to make you aware of the changes that
have taken place. More complete explanations may be found in the A-f esa Debugger
Docu11lenta lion.

Interpreter

The major addition to the Mesa 4.0 debugger is an interpreter that handles a subset of 'the
Mesa language; it is useful for common operations such as assignments, dereferencing,
indexing, field access, addressing, and simple type conversion. It is a powerful extension to
the current debugger command language, as it allows you to more closely specify your
variables while debugging, thus giving you more complete information with fewer
keystrokes. A subset of the M,esa language has been speci fied as being acceptable to the
interpreter (a copy of the grammar is attached to this memo).

Statement Syntax

Typing space (sp) to the command processor enables interpreting mode. At this point the
debugger is ready to interpret any expression that is valid in the (debugger) grammar.

Multiple statements are separated by semicolons; the last statement on a line should be
followed by a carriage return (CR). If the statement is a simple expression (ie., not an
assignment), the restllt is displayed after evaluation.

For example, to perform an assignment and print the result in one command, you would
type foo ~ exp; foo.

Loopholes

A more concise LOOPHOLE notation has been introduced to make it easy to display arbitrary
data in any format. The character "%" is used to denote LOOPHOLE[exp, type], with the
expression on the left of the %, and the type on' the right.

For example, the ex pression foo % short red Foo means LOOPHOLE the type of the variable
foo to be a short red Foo and display its value.

Mesa 4.0 Debugger Update 2

Subscripting

There are two types of in terval notation acceptable to the interpreter. The notation [a ..
b] means start at index a and end at index b. The notation [a ! b] means start at index a
and end at index (a+b-l).

For example, the expressions MEMORV[4 .. 7] and MEMORV[4 ! 4] both display the octal
conlen ts of memory locations 4 through 7. Note that the interval notation is only valid for
display purposes, and therefore is not allowed as a LeftSide or embedded inside other
expressions.

Alodule Qualification

To improve the performance of the interpreter, the $ notation has been introduced to
distinguish between tTIodule and record qualification. The character $ indicates that the
name on the left is a module, in which to look up the identifier or TVPE on the right. If a
module cannot be found, it uses the name as a file (usually a definitions file). A valid octal
frame address is also accepted as the left argument of $.

For example, FSP$TheHeap means look in the module FSP to find the value of the variable
TheHeap. In dealing with variant records, be sure to specify the variant part of the record
before the record name itself (ie., foo % short red FooDefS$Foo, Ilol foo % FooDefs$short
red Foo). .

Type Expressiolls

The notation n@ type" is used to construct a POINTER TO type. This notation is used for
constructing types in LOOPHOLES (ie., @foo will give you the type POINTER TO foo).

Examples

Some of the old commands may now be simplified as follows:

Interpret Array [array,index',n] becomes array[index ! n]
Interpret Call [proc] becomes proc[param1, .. os paramN]
Interpret Dereference [ptr] becomes ptn
Interpret Expression [exp] becomes exp
Interpret Pointer [address,type] becomes address%@typet
Interpret SIze [var] becomes SlzE[type]
Interpret STring [string,index,n] becomes string[index ! n]
Interpret @ [var] becomes @var
Display Variable [var] becomes var
Octal Read [address,n] becomes MEMoRv[address ! n]
Octal Write [address, rhs] becomes MEMoRv[address] ~ rhs.

Here are some sample expressions which combine several of the rules into useful
combinations:

If you were interested in seeing which procedure was associated with the third keyword of
the menu belonging to a particular window called my Window, you would type:

myWindow.menu.array[3] .proc

Mesil 4.0 Debugger Update

which might give you the following output:

Create Window (PROCEDURE in WEWindows).

If you wanted to look at one of YOUf procedure descriptors, you might type:

4601 B%@procedure ControlDefS$ControlLinkt

which might produce the following output:

ControILinl<[procedure[gfi: 23B, ep: 0, tag: procedure]].

3

The basic arithmetic operations are provided by the interpreter (with the same precedence
rules as followed by the Mesa compiler).

3 +4 MOD 2; (3 +4) MOD 2

would produce the following output:

3
1.

Radix conversion between octal and decimal can be forced using the loophole construct; for
example, exp%cARDINAL will force octal output and exp%INTEGER will force decimal.

1\ typical sequence of expressions one might use to initialize a record containing an array of
Foos and display some of them would be:

rec.array ~ DESCRIPTOR[FSP$AllocateHeapNode[n*slzE[FooDefs$Foo]], n];
InitArray[ree.array]; ree.array[first .. last] .

Process Commands

The debugger has added a set of commands fOf usc with the new process capabilities of the
language and the system. Display of the new data types is as follows: condition variables
and monitor locks arc displayed in octal; a process is displayed as PROCESS [octa 1 numbe r].
In all of the process commands, the message "! is an inval id ProcessHandle" or "I
not a process" appears if the process is invalid.

Set Process Context process

sets the current process context to be process and sets the corresponding frame context for
symbol lookup to be the frame associated with process. Upon entering the debugger for the
first time, the process context is set to the currently running process. Note that either a
variable of type PROCESS (returned as the result of a FORK) or an octal ProcessHandle is
acceptable as input to this command. Note· also that when you set the octal context or
module context, the process context is set to NIL; however, it is restored when you reset the
context

Display Process process

is a specialized version of Display Variable that displays interesting things about a
process. This command shows you the ProcessHandle and the frame associated with process.
and whether the process is waiting on a monitor or a condition variable (wa it i 11g ML or
wa it ing CV). Then you are prompted with a ")" and enter process subcommand mode. A
response of N displays the next process in the array of psbs; R displays the root frame of the

Mesa 4.0 Debugger Upd~ltc 4

process; S displays the source text; P displays the priority of the process; and Q or DEL
terminates the display and returns you to the command processor. A variable of type
PROCESS (returned as the result of a FORK) or an octal ProcessHandle is acceptable as input to
this command (note that process is an interpreted expression).

Display Queue id

displays all the processes waiting on the queue associated with id. For each process, you
enter subcommand mode. The semantics of the subcommands remain the Saine as in
Display Process, with the exception of N, which in this case follows the link in the
process. This command is prepared to accept either a condition variable, a monitor lock, a
monitored record, a monitored program, or an octal pointer (as in a pointer to the
ReadyList). Note that id is an interpreted expression; if id is simply an octal number, you
are asked whether it is a condition variable in order for the debugger to know where to find
the head of the queue (Le., Display Queue: 175034B, condition variable? [Y or N]).

List Processes [confirm]

lists all processes by telling you the ProcessHandle and its frame. If you wish to see more
information about a particular process use the D i sp 1 ay P roce s s command.

Conditional Breakpoints, Multiple Proceeds, and new Breakpoint Syntax

The Mesa 4.0 debugger has extended the former set of breakpoint commands to include the
capability to set conditional breakpoints.

The syntax for all of the· Mesa 3.0 breakpoint commands remains basically the same with the
following extension: if you type a Sp after the procedure or module name you receive a
prompt for the condition; if you type a CR it terminates the command input (in the case of
en try / exit breaks) or just prompts for the source (in the case of text breaks), ie.,

Break Procedure: proc(sp), condition: x< 2 (CR) , source: IFa =b (CR)
Break Procedure: prOc(CR), source: IF a =b (CR).

The three valid formats for a conditional expression are:

variable relation variable - eg., stop when x < y

variable relation number - eg., stop when x > == 10

number - eg., stop the 5th time you reach this breakpoint

These commands accept relations belonging to the set: {<,), ~ #, < ~) =}, corresponding to:
less than, greater than, equal, not equal, less than or equal, greater than or equal.

This gives us the ability to do Jnultiple proceeds with the same syntax as simple conditional
breakpoints.

Since the variables arc interpreted expressions, they arc looked up in the current context.
However, if you are in a module context and wish to specify a local variable of the
procedure you are setting the breakpoint in, you may do this by saying:

Mesa 4.0 Debugger Updnte 5

proc. var - ie., use the local variable var defined ill proc

You may change the condition on a particular breakpoint or change a breakpoint from a
conditional to a non- conditional one or vice- versa simply by setting the breakpoint again
using the new condition.

There has also been a simplification to the breakpoint syntax as follows:

All commands to set breakpoints begin with the key letter B,
eg., Break Procedure instead of SEt Procedure Break

All commands to set tracepoints begin with the key letter T,
eg., Trace Procedure instead of SEt Procedure Trace

The keyword P rog ram has been replaced by the word Modu1 e,
eg., CLear Module Break instead of CLear Program Break

All of the breakpoint commands now accept a valid GlobalFrameHandle as input when
prompted for a module name.

New Commnnds I Changes to Existing Commands

Kill S e S S i on [con firm]

ends your debugging session, cleans up the state as much as possible, and returns to the Alto
Executive. Use this command instead of shift- Swat or the boot button to leave the debugger.

ATtach Symbol s [globalframe, filename]

attaches the g)obalframe to filename. This is useful for allowing you to bring in additional
symbols for debugging purposes not initially anticipated.

ATtach Image [filename]

specifies the filename to use as an image file when the debugger has been bootloaded. It is
useful when the user core image has been clobbered. The default extension for filename is
".image".

Di sp1 ay Stack subcommands

The 0 i sp 1 ay Stack command now makes a distinction between displaying module (global)
and procedure (local) contexts. rrhe valid subcommands for local contexts remain as in
Mesa 3.0: n,p,v,r,s,q; with the addition of the subcommand> j, n (10) which means jump
down the stack n levels. Note that if n is greater than the number of levels it can advance,
the debugger tells you how far it was able to go. Most of these subcommands apply to
Di sp 1 ay Stack on a global context with the exception of j and n. If the debugger cannot
find a symboltablefor some frame on the call stack, you get the message "No symbol s for
nnnnnnB" and enter restricted Displ ay Stack subcommand mode in which only the
subcommands j, n, and q are allowed. Note that a local context is displayed as the
procedure name with its local frame, followed by the module name and its global frame; a
global context is displayed as the mod"ule name and its global frame. For example,

Mesa 4.0 Debugger Update

>Display Stack -- on a global frame
StreamsA, G: 172674B >?--Options are: p,q,r,s,v.
>Display Stack -- on a local frame
TArrays, L: 165064B (in TArrays, G:166514B)

)? --Options are: p, v, r, s, q, j, n.

6

Notice that the convention, proc, L:nnnnnnB (in module, G: nnnnnnB), applies
throughout debugger output, wherever procedures and modules are displayed.

CUrrent context

The notion of the current context has been extended to include the current ProcessHandle as
well as the name and corresponding global frame address of the current module and the
current configuration.

Old commands that are gone

Join Ports and Interpret SIze have been taken out of the debugger's command language
since their functions have been taken over by the debugger interpreter; D i sp 1 ay Bind i ng
pa th has been removed since the concept of a binding path has gone away.

Additional Capabilities

AI/ore breakpoints - local procedures

Due to a change in the lookup algorithm for procedures, it is now possible to set
breakpoints/tracepoints on a local (nested) procedure without being in the context of its
enClosing procedure. However, in order to display a local procedure you must still be in its
enclosing context. .

Validity checking

The debugger makes a considerable effort to check if the user core image has been smashed
in any way. When it determines that something is wrong, rather than printing out incorrect
information it sets the context to NIL and disables all of the commands that rely on getting
information either from symbol tables or from the loadstate. The user gets a message that
says "Current context invalid." or "Command not allowed." whenever this situation
occurs. At this thne you might want to attach an image file or some symbols (see the
ATtach comands) to find out what is wrong.

Installing

To install the debugger with a command line to the Alto Executive. use the "I" switch; use
the "L" switch to load programs with code links (to save space). For example, typing
XDebug Wi ndExl i installs the debugger with the window manager (WINOEX.8CO); typing
XDebug Wi ndExl i 1 installs WINOEX with code links.

Alissing definition files

Instead of simply refusing to give you any information about your variables when you arc
missing a definitions file or have the wrong version of a file, the debugger prints a "?" to
give you an indication that ·something is missing.

Mesa 4.0 Debugger Update 7

Invalid values

The debugger will print "?[va1 ue]" when displaying enumerated types that appear to be
wrong (ie., out of range).

Comments ill the typescript file

A comment command has been added to the debugger command language. Use "..; -" to
ignore type- in until a carriage return (CR). This is useful for saving your own notes along
with your typescript file as well as type- in to be used for window selections.

Current Date and Time

The current date and time is inserted at the beginning of your typescript file along with the
date and time that your version of the Mesa 4.0 debugger was created.

Default command

Typing the escape character (ESC) to the command processor of the debugger, uses the last
command as the next valid command (Le., yoti receive the prompts for the parameters (if
any) for the previously executed command).

Confirming commands

When a command requires a [con firm] (CR), the debugger goes into wait- for- DEL mode if
an invalid character is typed.

Extended Features

See the Debugger - Extended Features memo for further details on the following.

FTP in the debugger'

The tFTP command (control-F) is used to provide file transfer capabilities from within
the debugger usi ng the standard FTP package. Any comments and/or problems regarding
VfP itself should be addressed to the Communications Group. If FTP has not been loaded,
trying to use any of the FTP commands will give you the message "-- FTP not i nsta 11 edIt.

UserProcs

The tUs e rP roc command (con t ro 1-U) allows you to load your own debugging package
into the debugger. If you have only one user proc loaded when you type contro1-U, it will
be invoked automatically. If you have several user procs loaded, typing "?" will give you a
list of the command names for the user procs that you have loaded. If it can't find any
procedures that have been loaded, you will just get the message, " ! No user procs are
cu rrent 1y loaded".

Willdow manager

The new window manager WindEx has several commands which al10w you to set breakpoints
and tracepoints by selecting text locations. Confirmation is given by moving the selection to
the place at which the breakpoint is actually set.

Mesu 4.0 Debugger Updute 8

lnternnl Changes

Debugger Nub

The Mesa 4.0 debugger has been able to realize a signi ficant space reduction by removing its
own internal debugging facilities and replacing them with a nub. Typing to to the
command processor brings you into the debugger nub with a "I I" prompt. The following
limited set of commands are available in the nub: Install, Bitmap, New, Start, Proceed,
and Quit. Bitmap[n(lO)] reallocates the bitmap to n pages (the default size is about 50
pages). The nub also provides a minimal signal catcher and interrupt handler as well as
primitive debugging facilities. It is possible to install a different version of the debugger to
use for debugging the debugger itself (sec a melnber of the Mesa Group if you are interested
in knowing more about how this works).

Savings in space

The global frame size of the Mesa 4.0 debugger has been reduced by over 50% from the
previous release. This has created space for the interpreter and for a larger bitmap. Some
of the savings is due to the split of the internal and external debugger. Another reason is
due to the way in which the debugger handles strings. By putting the command strings,
command prompts, signal and error messages, and debugger FTP commands into a separate
file (and running this file through the string compactor), the string segment can be swapped
in only when needed. Additional space was saved by making many of the remaining strings
into local strings so that they do not take up space in the global frame.

Documentation

More complete documentation on the Mesa 4.0 Debugger may be found in the Mesa
Debugger J)ocumenla lioll. Dug fixes may be found in the closed change requests maintained
by (SDSupport).

Dcbuggcr Sunllllary
Version 4.0

AScii read [address, n]

ATtach Image [filename]

Sy mbols [globalframe, filename]

Break Entry [proc, condition]

Module [module, condition, source]

Procedure [proc, condition, source]

Xit [proc, condition]

CAse off [confinn]
on [confinn]

CLear All Breaks [confinn]
Entry traces [module]

Traces [confinn]
Xit traces [module]

Break [proc, source]

Entry Break [proc]

Trace [proc]

Module Break [module, source]

Trace [module, source]

Trace [proc, source]

Xit Break (proc]

Trace [proc]

COremap [confirm]
CUrrent context
Display Configuration

Eval- stack
Frame [address]

GlobalFrameTable
Module [module]

Process [process] - n,p,q, r,s
Queue lid]

Stack - j,n,p,v,r,s,q
Variable [id]

Rnd variable [id]

Interpret Array [array, index, nJ

Call [proc]

De- reference [ptr]

Expression [exp]

Pointer [address. type]

String [string, index, n]

@ [var]

Kill session [confirm]
List Breaks [confinn]

Configurations [confinn]
Processes [confinn]
Traces [confirm]

Octal Clear break [globalframe, bytepc]

Read [address, n]

Set break [globalframe, bytepc]

Write [address, rhs]

Proceed [confirm]
Quit [confinn]
Reset context [confirm]
SEt Configuration [config]

Module context [module]

Octal context [address1

Process context [process]

Root configuration [config]

STart [address]

Trace All Entries [module1

Xits [module]

Entry [proc,condition]

Module [module, condition, source]

Procedure [proc. condition, source]

Xit [proc, condition]

Userscreen [confirm]
Worry off [confirm]

on [confirm]
•• [comment]

StmtList

AddingOp

BuiltinCall

Expression

ExpressionList

Factor

Interval

LeftSide

Literal

MultiplyingOp

Primary

Product

Qualifier

Stmt

Sum

TypeConst ructo r

Typeldentifier

TypeSpecification '

Debugger Illtef()retcr GralnnUlf
Version 4.0

Stmt I StmtList; Stmt

.. - + I .

.. -

.. -

.. -

.. -

.. -

LENGTH [LeftSide] I BASE [LeftSide] I
DESCRIPTOR [Expression] I
DESCRIPTOR [Expression , Expre'ssion]
SIZE [TypeSpecification 1
Sum

Expression I ExpressionList, Expression I
• Primary I Primary

Expression .. Expression I Expression! Expression

identifier I Literal I MEMORY [Expression] I
LeftSide Qualifier I (Expression) Qualifier I
identifier $ identifier I numericLiteral $ identifier

numericLiteral I
stringUteral I .. all defined outside the grammar
characterLiteral

* I / I MOD

.. - LeftSide'1 (Expression) I @ LeftSide I BuiltinCall

.. - Factor I Product MultiplyingOp Factor

. identifier I t I % I % TypeSpecification I [ExpressionList]

Expression I LeftSide ~ Expression I MEMORY [Interval 1
LeftSide [Interval] I (Expression) [Interval]

Product I Sum AddingOp Product

.. - @ TypeSpecification

INTEGER I BOOLEAN I CARDINAL I
CHARACTER I STRING I UNSPECIFIED I
identifier I identifier $ identifier I
identifie.r. Typelden'tifier

Typeldentifier I TypeConst ructor

Windex SUlllmary

Version 4.0

WHAT WINDEX MOUSE BUTTONS 00:

RED
YELLOW
BLUE
YELLOW/BLUE

MENU COMMANDS:

Create [window]
Destroy [window]
Move [window]
Grow [window]
Load [selection, window]
Stuff It [selection, window]

Scroll Bar

ScrollUp
Thumb
ScroliDown
NormalizeSelection

WHAT MENU MOUSE BUTTONS DO:

Text Area

Select/Extend characters
Select/Extend words
Menu Commands

Find [selection, window]
Set Brk [selection]
CI r Brk [selection]
Set Trc [selection]
Set Pas [index, window]
Keys On/Off

RED
BLUE

"Do it" - in this window/at this spot
Reset to previous state

WHAT KEYSET BUTTONS 00:

BS DEL

DURING TYPE IN:

ESC

Backspace character
Backspace word

CR STUFF IT

BS
CONTROL-W
FL4 Stuff current selection into default window

Close connection [confirm]
DElete filename [filename]

Fetch Comnland SUDlmary

DUmp from remote file [dumpfiJe]
Free pages
list remote file designator [filelist]
LOad from remote file [dumpfile]
Open connection [host, directory]
Quit [confirm]
Retrieve filename [filename]
Store filename [filename]

XEROX

Inter-Office Memorandum

To Distribution Date Seplember 7, 1978

From John Wick Location Palo Alto

Subject Mesa 4.1 update Organization SOD/SO

Filed on: [lris]<Mesa>Doc)Mesa41.bravo

This memo summarizes the changes contained in Mesa 4.1. This is a maintenance release, and
contains primarily bug fixes documented elsewhere (by SDSupport). There have been no changes
to public interfaces since Mesa 4.0. However, there are a few highlights that are worth pointing out.

In the paragraphs below, numbers in square brackets refer to change requests maintained by
SDSupport.

Microcode

111e Mesa 4.1 compiler now generates the BL TC instruction. This means that 4.1 BCDS are not
backward compatible with 4.0; that is, the output of the 4.1 compiler will not run with 4.0
microcode. (However, 4.0 BeDS will run with 4.1 microcode, so there is no need to recompile.)
Note that all Mesa 4.1 image tiles require 4.1 microcode. [4.0.148]

Users are strongly encouraged to update to the 4.1 microcode, as there is a rather nasty bug in the
4.0 signed compare instiuctions. [4.0.167]

Compiler

'nlere is one change in the semantics of relative pointers. To more closely parallel array
subscripling, a relocated relative pointer is now automatically dereferenced. If b is a base pointer
and p a relative pointer to Faa, the construct b[P] is now of type Faa instead of type POINTER TO

Faa. (The compiler will point out all the constructs where an @ operator is needed or where an t
should be removed.) [4.0.273]

The constructs FIRST and LAST now apply to (LONG) INTEGERs, CARDINALs, and CHARACTERs; they
yield the minimum and maximum values, respectively. For example, LAST[LONG INTEGER] has the
value 2147483647 (231.1); these constructs should be used in place of MaxLonglnteger and the
like. [4.1.322] .

Hinder

The binder now enforces quad-word code alignment. This will affect only systems running 011 the
DO, although Alto/Mesa users may notice a very small increase in the size of packed code segment').

Mesa 4.1 Update 2

The binder now pauses when warnings are detected (under control of the /p. switch).

Debugger

The debugger has been updated to support Pilot on the DO. Alto users are unaffected by Ulesc
ex tensions.

The string parameter passed to Call Debugger is now printed by the debugger; a 4.1 system (Mesa
or BasicMesa) is required to usc Ulis feature. [4.0.26, 4.0.301]

Distribution:
Mesa Users
Mesa Group

XEROX

Intcr-Office Mcnlornndum

To Mesa Users Date December 5, 1978

From 1. Sandman Location Palo Alto

Subject Performance Measurement Tool Organization SDD/SS/DE

Filed on: [IRIS]<Mesa>Ooc>PerformanceTool.bravo .press

A tool for the performance measurement of Mesa programs is described below. It allows users to
identify places in their programs and then collect timing and frequency statistics of program
execution between these places. The system is implemented as a set of commands that can be
executed from the Mesa Debugger, plus a routine that intercepts all conditional breakpoints and
collects statistics about them. Existing Debugger commands are used to specify what points are to
be monitored, and additional commands are provided for controlling the measurements and
outputting the results. Both Alto/Mesa programs as well as Pilot programs may use this
measurement tool.

Concepts

A node is defined to be a place in a program where a breakpoint can be set by the Mesa Debugger.
In fact, nodes are implemented via conditional breakpoints, so that while measurements are turned
on, the fUllctioning of all conditiOlial breakpoints is different. In particular, conditional breakpoints
behave as if they were never encountered or as if the stated condition is tested but is always found
to be FALSE. (Also the count is not decremented for multiple proceed conditional breakpoints).

A leg is defined by a pair of nodes, one called the from node and the other the to node. A leg is
the code executed between these nodes. Interesting items measured about a leg include the number
of times this leg was executed and the time required to execute the leg.

Facilities are also provided for associating a histogram with any node or leg, thereby providing more
detailed distribution information about the entry than is provided by counts, sums, and averages.

Since processor time or task time is not available on the Alto or the DO, the measure of computing
is simply the elapsed time from the time the from node is executed to the time the to node is
executed.

l11e concept of nodes and legs is borrowed from the Diamond ETM module. This tool was first
written by Paul Jalics and t~ansferred to the Mesa Group.

Performance Measurement Tool 2

Terminology

Node Table

A table maintained by the measurement module containing information about each node. A node
for each conditional breakpoint is entered into this table by the Collect nodes command or by
the measurement module when it encounters a conditional breakpoint that is not already in the
table. The node table has 20 entries.

NodelD

'The index of a node in the node table. The NodelD for a particular conditional breakpoint does not
change during a measurement session and is used in commands to identify a particular node.

Node pair

A pair of nodes defining a Leg. The syntax is N1-N2, where N1 and N2 are both NodelDs. The
character "*" may be used as a wildcard node designator in a Node pair. For example, the pair *­
* designates all possible pairs and 1-* designates all pairs with node 1 as the from node.

Leg Table

A table maintained by the measurement module containing various information about each leg.
Legs are entered into this table by the command Add Leg s or by the measurement module when it
encounters a new leg and automatic insertion is enabled. The leg table has 41 entries, one of which
is reserved.

LeglD

r-The index of a leg in the leg table. The LeglD for a particular conditional breakpoint does not
change during a measurement session and is used in commands to identify a particular leg.

Histogram

An optional table that may be associated with either a node or leg that records the distribution of
the value of the node or leg by incrementing counters in a number of buckets., The distribution
may be either simple or logarithmic. In a simple distribuiton, a base may be specified which will be
used as the offset for the first bucket. In a logarithmic distribution, the buckets are indexed by the
number of leading binary zeros in the value. A scale is used to adjust the value for an optimal fit
into the number of buckets. There is a storage pool of 256 words that is shared among all
histograms to hold buckets and histogram information.

Node Histogram

A histogram associated with a node. The value of the node is the first variable specified in the
conditional breakpoint that determines the node. (See Section 3 of lvlesa Debuggcr Documcntation.)
The value is treated as a 16 bit unsigned quantity. For a simple node histogram, the value is
adjusted by subtracting the base (if any) and dividing by the scale factor; the resulting quotient is
recorded. A logarithmic node histogram has a maximum of 16 buckets because the value is a 16 bit
quantity.

Performance Measurement Tool 3

Leg Histogram

A histogram associated with a leg. The value of the leg is the 32 bit time of the leg in units of
ticks. The value is adjusted by shifting the value to the right by the scale. A logarithmic leg
histogram has a maximum of 32 buckets because the value is a 32 bit quantity.

Components

Perf Tool is the component of the measurement system that lives with user programs built on top of
Alto/Mesa. This configuration contains two modules: Perf Monitor and PerfBreaJ<Handler.
Perf Monitor initializes the Perf Tool. PerfBreakHandler contains a breakpoint handler that
intercepts all conditional breakpoints and accumulates statistical information about nodes and legs.·
Perf Tool must be loaded and started in the system it will monitor. This may be done by including
Perf Tool in the client configuration whose control module starts PerfDefs.PerfMonitor or by
executing the following command to the Alto Executive:

>Mesa Perf Tool Client

PilotPerfTool is the component of the measurement system that lives with user programs built on
top of Pilot. This configuration contains two modules: PilotPerfMonitor and
PilotPerfBreakHandler. These modules perform the same functions as Perf Monitor and
PerfBreakHandler, respectively. Since there is no loader in Pilot 2.0, PilotPerfTool must be
included in the client configuration whose control module starts PerfDefs.PilotPerfMonitor. In
addition, the code for PilotPerfBreakHandler must be made resident. Use the StartPilot command
ResidentCodeModule by executing. the following command to the Alto Executive:

>Sta rtP i 1 ot Res i dentCodeModul e["PilotPerfTool>PilotPerfBreakHandler"]
Build["Client"]

Perf Package is the component that lives as a userproc in the Mesa Debugger. It implements the
basic commands required to manipulate the node table and the leg table and to output
measurement results. Perf Package must be loaded into the Debugger before its commands can be
executed. The easiest way is to load It when installing the Debugger by executing the following
command to the Alto Executive:

>XOebug WindEx/l PerfPackage/l i

The command interpreter for the Perf Package is invoked by calling the userproc Perf Monitor.
The userproc dispatcher is invoked by the -tUserProc command (control-U). If only one
userproc is loaded, it is automatically called, otherwise some unique prefix must be typed when the
dispatcher prompts for a procedure name. See the AI esa Debugger Documentation.' Debugger -
Extended Features for details.

Operation

When the break handler intercepts a breakpoint. it checks to see if the breakpoint is a conditional
breakpoint. If so, it f1nds the node corresponding to the breakpoint, and increments its counters
and processes iLl) histogram if one exists. If tracking of legs is enabled, the leg table is searched for
the legs of which this node is a part. Otherwise, the break point is resumed.

Performance Measurement Tool 4

In the simple case, a leg is tracked as follows. The break handler intercepts a conditional
breakpoint that is the from node of the leg (from) and some time later It intercepts 'a conditional
breakpoint that is Ule to node of Ule leg (to). At this point, the leg's time is recorded, its count is
incremented, and its histogram (if any) is processed.

l11is simple model of tracking a leg is complicated by recursion, signals, and multiple processes.
WiUl recursion, from may be encountered several times before to is encountered. With signals, a
process may be unwound after it encounters from but before it encounters to. With multiple
processes, one process may encounter from and then anoUler immediately encounter to.

To deal with the complication of multiple processes, there is the concept of the tracked process. If
the tracked process is not NIL then only those conditional breakpoints that are encountered by the
tracked process are treated as nodes. All others are simply resumed as if they did not exist. If the
tracked process is NIL, then all processes are tracked.

To deal WiUl these complications, there is a leg owner. A leg owner is the process that last
encountered from. When to is encountered and the current process is its owner, then the leg is
recorded and the leg owner is cleared. If the current process is not the owner, the leg is ignored.
As a result of ignoring legs, from and to may be counted more times than the leg between them is
counted.

Normally, when a node is encountered all legs of which that node is a part are tracked.
Alternatively only Ule leg defined by the last node encountered and the current node is tracked.

Commands

The command interpreter completes commands like the Debugger command interpreter. The
capitalized characters are all that must be typed to specify a command.

General Commands

'Collect nodes

enters conditional breakpoints as nodes into the Node Table.

Initialize tables [Confirm]

completely reinitializes all tables and counters. Both the node table and the leg table and all
histograms arc cleared.

list Tables

displays all the summary statistics gathered so far and the complete contents of the node
table and the leg table. May be aborted by typing tDEl.

Monitor on

turns on performance monitoring. All conditional breakpoints will now be monitored.

Performance Measurement Tool 5

Monitor off

turns off performance monitoring. All conditional breakpoints will now behave like normal
conditional . breakpoints.

Quit [Confirm]

exits the Perf Package. and returns to the Mesa Debuggcr.

Zero tables [Confirm]

zeros out all counts and sums from the tables (including the total time spent measuring) but
will leaves all other information in the tables unchanged. This command is useful for
preserving the measurement environment but just zeroing out the counts and sums collected
so far.

Leg and N ode Commands

Add Legs [Node pair, Node pair, .•.]

adds the legs specified by the node pairs to the leg table. If a designated leg entry is .
already in the leg tablc, the leg is not affected.

Oelete Legs [LegIO, LegIO, .••]

deletes the specified legs from the leg. table.

List Leg table

displays the contents of the leg table. A Leg 10 followed by an asterisk has a histogram
associated with it. May be aborted by typing 1'OEL.

List Node tabl e

displays the contents of the node table. A NodelD followed by an asterisk has a histogram
associated with it. May be aborted by typing 1'OEL.

Mode Control Commands

Add Immediate successors

enables the PerfBreakHandler to add legs that it encounters that are not in the table.
These legs may be deleted if there is no room in the leg table when legs are being added
by the Add Leg s command.

Add No legs

prevents the PerfBreakHandler from adding legs that arc not in the table. This is the
defmtlt mode for adding automatic legs.

Pcrformancc lVlcasurclllcnt Tool 6

Track All Legs

tells the PerfBreal<Handler to track all legs in the table. This is the default mode for
tracking legs

Track All Processes

tells the PerfBreakHandler to track all processes. All processes are tracked in the default
case.

Track Immediate successors

tells Ule PerfBreakHandler to track only the leg defined by the last node encountered and
the current node.

Track No legs

tells the PerfBreakHandler to disable tracking of legs.

Track Process [process]

tells the PerfBreakHandler to track only those legs that are executed by the specified
process. Nodes encountered by other processes will not be recorded. An octal
ProcessHandle as obtained from the Debugger's Lis t Pro c e sse s command is
acceptable as input to this command. A carriage return will set the process to all processes.

Histogram Commands

Add Histogram for Leg [LegID]

adds a histogram and associates it with the specified leg. The command prompts for
number of buckets, type (simple or logarithmic), scale, and base if the type is simple. 'Note
that since scaling of a leg histogram is done by shifting instead of dividing, the scale is
entered as a power of two. .

Add Histogram for Node [NodeID]

adds a histogram and associates it with the specified node. The command prompts for
number of buckets, type (simple or logarithmic), scale, and base if the type is simple.

Delete Histogram for Leg [LegID]

deletes the histogram associated with the specified leg.

Delete Histogram for Node [NodeID]

deletes the histogram associated with the specified node.

Lis t His tog ram for Leg [Leg I D]

displays the histogram associated with the specified leg. May be aborted by typing tDEL.

Performance Measurement Tool 7

List Histogram for Node [NodeID]

displays the histogram associated with the specified node. May be aborted by typing tDEL.

ComllliUld Tree

TIlis is the command tree structure for lhe Perf Package. It is fonnatted like the command tree for
the Mesa Debugger (sec Afesa Debugger Documentation).

Add Histogram for Node
Leg

Immediate successors
Legs
No 1 egs

Collect nodes

Delete Histogram for Leg
Node

Legs

Initialize tables

List Histogram for Leg
Node

Leg table
Node tabl e
Tables

Monitor on
off

Quit

Track All Legs
Processes

Immediate successors
No legs
Process

Zero tables

Limitations

1. Time Base: The time base available on the Alto is a 26-bit counter, where the basic unit of time
is 38 microseconds. Thus the c(lunter turns over every 40 minutes, and no individual time greater
than 40 minutes is meaningful on the Alto. Total times are 32-bit numbers and will overflow after
340 minutes.

Performance Measurement Tool 8

2. Overhead Calculation: Due to implementation restrictions and timer granularity, some of the
overhead of processing a breakpoint is incorreclly assigned to the client program instead of the
Perf Tool. As a result, leg times will be about ten microseconds high for each node that was
enountered while processing that leg. Elapsed time is similarity affected.

3. Counter Sizes: In a long measurement session, the counters on nodes, leg and histograms may
overflow. Node and leg counters are 22-bit numbers, while hislogram counters are 16-bit numbers.
If a node or leg counter overflows, a "*" follows the count when the field is listed.

4. Recursive Procedure Calls, UNWINDS, multiple processes: As mentioned in the section on
operation, the above Interfer with the simple start to end concept of a leg. With recursion and
mulliple processes, the start node of a leg may be tripped several times before the end node is
tripped. With unwinding, the start node of a leg may be tripped and the end node never reached.
If any of these cause a leg to be ignored, the referenced field in the Leg Table has a ",..." following
it when the table is listed.

5. Table Sizes: The node table contains 20 entries. (Note that the Pe rfB reakHand 1 e r
automatically extends the number of conditional breakpoints that can be set in the debugger from 5
to 20.) The leg k1ble currently has 40 entries. Note that this number is small when compared to the
20*20 possible legs. For this reason, there exist a number of commands to give the user control over
exactly what legs are in the table.

6. MemOlY Requirements: The Perf Tool requires seven pages of resident memory; three for
Pe rfB reakHand1 e r's code, and four for Perf Tool's frames. This may affect the performance of
some systems that usc a lot of memory, especially on the Alto.

7. Pe rfB reakHand 1 e r acts like a worry mode breakpoint and as a consequence, you may find
you cannot Qu i t from the Debugger after your session. Use the Kill Debugger command instead.

Getting Started

Outlined below are the steps required for using the measurement tool.

l. obtain the bcd's for Perf Tool and Perf Package.

2. install the Perf Package in the Mesa Debugger (version 4.1 or later).

3. start your program executing with the Perf Tool included.

4. enter the Debugger and set conditional breakpoints as desired.

6. turn measurements on via the Mon i to r on command.

7. manipulate the leg table as desired.

8. proceed with program execution.

9. return to the debugger via control-swat or an unconditional breakpoint.

10. display results with the Lis t commands.

Performance Measurement Tool

Sample Session

The following annotated listing of a DEBUG.TYPESCRIPT session should give a fair idea of the
use of the measurement tool.

Alto/Mesa Debugger 4.1 of 6-Sep-78 18:47
13-Nov-78 11:49

)SEt Module context: Segments
)Interpret Call Procedure: AllocatePages 0: 160

(anon)=26000Bt -- Allocate most of memory to cause swapping for example
)SEt Module context: Swapper
)Break Entry Procedure: AllocVM, Condition: AllocVM.pages = 1
-- a histogram will be attached to this breakpoint and the local variable p ag e s will be counted.
)Break Xit Procedure: AllocVM, Condition: 1
)Break Entry Procedure: MakeSwappedln, Condition: 1
)Break Xit Procedure: MakeSwappedln, Condition: 1
)userProc [confirm]
Proc: Perf Monitor
@Monitor on
@Collect nodes
@List Node table

-- Now conditional breakpoints activate

- - - - NOD E
Node Global Program

Id Frame Counter
------ -------

0 173314 3314
1 173314 3651
2 173314 2251
3 173314 2775

@Add Legs: 0-1,2-3
@List Leg table

TAB L E
Number of
References

0
0
0
0

- - LEG TAB L E

CON TEN T S
Config Module
Name Name

Mesa
Mesa
Mesa
Mesa

C 0 N

Swapper
Swapper
Swapper
Swapper

T E N T S

Proc
Name

Source
Line

AllocVM' @Entry
AllocVM @Exit
TryCodeS @Entry
TryCodeS @Exit

- - - - - - -
Leg From To # of Times Total Time Average Time % of
Id Nod~ Node Referenced' sec.msec:usec sec.msec:usec Time

------------- -------------

-

o 0 -) 1 0 0 0 .00
1 2 -) 3 0

@Add Histogram for Node: 0
Type of Histogram: Simple
Number of Buckets [1 .. 246]:12
Scale Factor [1 .. 65,535]:1
Base: 0
@Add Histogram for Leg: 0
Type of Histogram: Logarithmic
Number of Buckets [1 .. 32]:12
Scale Factor (2tn) [0 .. 31]:0
@Add Hi stog ram for Leg:' 1
Type of Histogram: Simple
Number of Buckets [1 .. 204]:12
Scale Factor (2tn) [0 .. 31]:5
Base: 32
@Quit [Confirm]
)Proceed [confirm]
)userProc [confirm]
Proc: Perf Monitor
@List Tables

0 0 .00

-

9

Performance Measurement Tool

Total Elapsed Time of Measurements =
Elapsed Time less Perf Monitor Overhead =
Total Overhead of Perf Monitor Breaks =
Total number of Perf Breaks handled =
Average Overhead per Perf Break =
% of Total Time spent in Perf Monitor =

- - - - NOD E TAB L E CON
Node G 1 oba 1 Program Number of Config

Id Frame Counter References Name
------ ------- ---------- --------

T

16.567:544
14.884:980
1.682:564

382
4:404
10.15

E N T S
Module Proc
Name Name

-

-------- --------

- - - -
Source
Line

0* 173314 3314 102 Mesa Swapper AllocVM '@Entry
1 173314 3651 102 Mesa Swapper AllocVM @Exit
2 173314 2251 89 Mesa Swapper TryCodeS @Entry
3 173314 2775 89 Mesa Swapper TryCodeS @Exit

- - - - - LEG TAB L E C 0 N T
Total Time Leg From To # of Tlmes

Id Node Node Referenced sec.msec:usec

0* 0 -) 1 102 4.328:390
1* 2 -) 3 89 605:530

@List Histogram for Node: 0
Number of References 102
Sum of Values 432
Average Value 4
Scale Factor 1
Base 0

Value Count

o 0
1 3
2 11
3 7
4 19
5 62
6 0
7 0
8 0
9 0

10 0
11 0

Overflow 0
@List Histogram for Leg: 0
Number of References
Sum of Values
Average Value
Scale Factor (2tn)

Value Count

1 O·
2 0
4 0
8 0

16 1
32 0
64 6

128 6

102
113,905

1,116
·0

E N T S - - - - -
Average Time % of
sec.msec:usec Time

42:435 26.12
6:803 3.65

10

Performance MeHsurement Tool

256 0
512 0

1,024 89
2,048 0

Overflow 0
@List Histogram for Leg: 1
Number of References
Sum of Values
Average Value
Scale Factor (2~n)
Base

Value Count

Underflow 17
32 2
64 14
96 7

128 4
160 2
192 4
224 6
256 6
288 20
320 2
352 3
384 2

Overflow 0
@Quit [Confirm]
>Kill session [confirm]

89
15,935

179
5

32

11

XEROX

Inter-Office Mcnlorandum

To Mesa Users Date December 15, 1978

From 1. Sandman Location Palo Alto

Subject Control Transfer Counting Tool Organization SDD/SS/DE

Filed on: [IRIS]<AlphaMesa>Doc)XferCounter.bravo .press DRAFT

A tool for studying behavior of Mesa programs is described below. It counts the number of control
transfers (xfers) to a module and records the time spent executing in a module. An xfer is the
general control transfer mechanism in Mesa. The following are all xfers: procedure call, return
from a procedure, traps, and process switches.

The system is implemented as a set of commands that can be executed from the Mesa Debugger, a
routine that intercepts all xfers and collects statistics about them, plus a routine that intercepts
conditional breakpoint') for turning the xfer monitoring on and off. Existing Debugger commands
are used to specify where xfer monitoring is enabled. and additional commands are provided. for
controlling the counting of xfers and outputting the results. Both Alto/Mesa programs as well as
Pilot programs may use this tool.

This tool is intended to provide a global view of the behavior 'of a system. With this tool, a user
can identify modules that warrant closer study will other tools such as the Performance Tool.

Components

XferCounter is the component of the tool that lives with user programs built on top of Alto/Mesa.
This configuration contains one module: Counter. It contains the xfer trap handler ·and a
breakpoint handler. XferCounter must be loaded and started in the system it will monitor. This
may be done by including XferCounter in the client configuration whose control module starts
XferCountDefs.Counter or by executing the following command to the Alto Executive:

)Mesa XferCounter C1 ient

PilotXferCounteris the component of the measurement system that lives with user programs built
on top of Pilot. This configuration contains one module: PilotCounter, which performs the same
functions as Counter. Since there is no loader in Pilot 2.0, PilotXferCounter must be included in
the client configuration whose control module starts XferCountDefs.PilotCounter. In addition, the
code for PilotCounter must be made resident. Usc the StartPilot command
ResidentCodeModu1e by executing the following command to the Alto Executive:

Xfcr Counting Tool

>StartPi 1 ot Res i dentCodeModul e["PilotXferCounter>PilotCounter lt
]

Build["Cl ient"]

2

XferCountPackage is the component that lives as a userproc in tile Mesa Debugger. It implements
the basic commands required to enable xfer monitoring and to output measurement results.
XferCountPackage must be loaded into the Debugger before its commands can be executed. The
easiest way is to load it when installing the Debugger by executing the following command to the
Alto Executive:

>XDebug WindEx/l XferCountPackage/l i

The command interpreter for the XferCountPackage is invoked by calling the userproc
XferCounter. The userproc dispatcher is invoked by the tUserProc command (control-U).
If only one userproc is loaded, it is automatically called, otherwise some unique prefix must be
typed when the dispatcher prompts for a procedure name. Sce the Mesa Debugger Documentation:
Debugger - Extended Features for details.

Operation

When xfcr monitoring is cnablcd and a xfer occurs, the xfer trap handler calculates the time since
the last xfcr and adds that to the cumulative time for the current module. It then calculates which
module is the destination of the xfcr and makes that the current module, incrementing its count.
The xfer handler thcn completes the xfer and tile user program resumes execution.

'TIle state of xfcr monitoring can be controlled by two methods. The first is by setting a conditional
breakpoint to be handled by the tool's break handler. The second is by calling the procedures
XferCountDefs.StartCounting and XferCountDefs.StopCounting.

When the break handler intercepts a breakpoint, it checks to see if the breakpoint is a conditional
brcakpoint. If not, the breakpoint handler proceeds to the debugger. If so, the state of xfer
monitoring is changed and program execution is resumed. A condition of 0 turns on xfer
monitoring. A condition of 1 toggles the state of xfer monitoring. A condition of 2 turns off xfer
monitoring. Any otiler condition has no effect.

Since multiple processes may interfere with each other, there is the conccpt of the tracked process.
If thc tracked process is not NIL, only those xfcrs that are encountered by the tracked process are
counted. All others arc simply resumcd. If the tracked process is NIL, then all processes are
tracked.

Commands

lbe command interpreter completcs commands· likc thc Debuggcr command interpreter. The
capitalizcd charactcrs arc all that must bc typed to spccify a command.

General Commands

list Module

displays thc statistics for the specified module. Thc module may bc specificd by cithcr its
global frame table index (gfi), global frame address (g) or its module name if the current
configuration contains the desired module. .

Xfcr Counting Tool 3

List Sorted by Time

displays all the statistics for each module in order of decreasing time. May be aborted by
typing tDEl.

List Sorted by Xfers

displays all the statistics for each module in order of decreasing number of xfers. May be
aborted by typing tDEL.

List Table

displays all the statistics for each module. May be aborted by typing tOE L.

Monitor on

turns on the toors breakpoint handler. All conditional breakpoints will now togglc the
monitoring switch.

Monitor off

turns off the tool's breakpoint handler. All conditional breakpoints will now behave like
normal conditional breakpoints.

Quit [Confirm]

exits the XferCountPackage and returns to the Mesa Depugger.

Track All Processes

tells the XferCounter to count the xfers of all processes. All processes are counted in the
default casco

Track Process [process]

tells the XferCounter to count only those xfers that are executed by the specified process.
An octal ProcessHandle as obtained from the Debugger's Lis t P roce s 5e 5 command is
acceptable as input to this command. A carriage return will set the process to all processes.

Zero .table5 [Confirm]

zeros out all counts and times.

Command Tree

'Illis is the command tree structure for the XferCountPackage. It is formatted like the command
tree for the Mesa Debugger (see AI csa Dcbuggcr Documcntation).

List Module
So rted by Time

Xfer Counting Tool

Table

Monitor on
off

Quit

Xfer

Track All Processes
Process

Zero tables

Limitations

4

l. Execution Speed: Xfer monitoring slows down the executions of a program since extra
processing is done on every x fer. As a result, interrupt processes will run relatively more
frequently.

2. Idle Loop Accounting: When no process is nmning, the Mesa Emulator runs in its idle loop
waiting for a process to become ready. This idle time is charged to the process that was last
running.

3. Time Base: The time base available on tlle Alto is a 26-bit counter, where the basic unit of time
is 38 microseconds. Thus the counter turns over every 40 minutes, and no individual time greater
than 40 minutes is meaningfl11 on the Alto. Total times are 32-bit numbers and will overflow after
340 minutes.

4. Overhead Calculation: Due to implementation restrictions 'and timer granularity, some of the
overhead of processing a xfer is incorrectly assigned to the client program instead of the
XferCounter. As a result, times must be interpreted as only a relative measure of the time spent in
a module.

5. Counter Sizes: Counts are 32-bit numbers. The maximum total count is 4,294,967,295 xfers.

6. Table Size: The XferCounter's tables hold the data for the first 256 global frame table slots. If
the global frame table is larger, some xfers may be ignored.

7. Memory Requirements: The XferCounter requires seven pages of resident memory; Two for
XferCountB reakHand 1 e r's code, and five for XferCounter's frames and tables. This may affect
the performance of some systems that use a lot of memory, especially on the Alto.

8. XferCounter's break handler acts like a worry mode breakpoint and as a consequence, you may
find you cannot Qu i t from the Debugger after your session. Use the Kill Debugger command
instead.

Getting Started

Outlined below are the steps required for using the measurement tool.

Xfcr Counting Tool

1. obtain the bcd's" for XferCounter and XferCountPackage.

2. install the XferCountPackage in the Mesa Debugger (version 4.1 or later).

3. start your program executing with the XferCounter included.

4. enter the Debugger and set conditional breakpoints to enable monitoring as desired.

5. turn the break handler on via the Mon i to r on command.

6. proceed with program execution.

7. return to the debugger via control-swat or an unconditional breakpoint.

8. display results with the Lis t commands.

Sample Session

The following annotated listing of a DEBUG.TYPESCRIPT session should give a fair idea of the
use of the measurement tool.

Alto/Mesa Debugger 4.1 of 6-Sep-78 18:47
4-Dec-78 11:17

*** interrupt ***
>SEt Module context: Loader -- Count xfers involved in loading a configuration
>B reak E nt ry P rocedu re: New. Cond i t i on: 0 -- Start monitoring when hit this break
>Break Xit Procedure: New, Condition: 2 -- Stop monitoring
>userProc [confirm]
Proc: XferCounter
@Monitor on
@Track Process: 2770 -- Track only the main process. Ignore the keyboard process
@Quit [Confirm]
>Proceed [confirm]
*** interrupt ***
>userProc [confirm]
Proc: XferCounter
@List Table
Total Xfers
Total Time

Gfi Frame

1B 173760B
3B 173740B
4B 173314B

lOB 173040B
IlB 173024B
12B 173020B
13B 173014B
21B 172740B
22B 172730B
24B 172724B
25B 172714B
31B 172700B

@List Sorted

5,884
950:152

Module Name

Resident
DiskIO
Swapper
LoaderUtilities
LoadState
LoaderBcdUtilities
Loader
NonResident
Segments
Strings
Files
FSP

by Xfers

Xfers

4
335
794
245
95

973
2,207

59
432
635

48
57

% Xfers Time % Time
------- ----------- ------

.06 152 .01
5.69 311:752 32.81

13.49 9"5: 874 10.09
4.16 19:380 2.03
1.61 87:020 9.15

16.53 69:160 7.27
37.50 264:556 27.84

1.00 15:732 1.65
7.34 26:182 2.75

10.79 51: 300 5.39
.81 4:636 .48
.96 4:408 .46

5

Xfcr Counting Tool 6

To'ta 1 Xfers 5,884
Total Time 950:152

Gfi Frame Module Name /I Xfers % Xfers Time % Time
------- ------------------ ----------- ------- ----------- ------

13B 173014B Loader 2,207 37.50 264:556 27.84
12B 173020B LoaderBcdUtilities 973 16.53 69:160 7.27

4B 173314B Swapper 794 13.:49 95:874 10.09
24B 172724B Str'ings 635 10.79 51:300 5.39
22B 172730B Segments 432 7.34 26:182 2.75

3B 173740B DiskIO 335 5.69 311:752 32.81
lOB 173040B Loade rUt il it; es 245 4.16 19:380 2.03
I1B 173024B LoadState 95 1.61 87:020 9.15
21B 172740B NonResident 59 1.00 15:732 1.65
31B 172700B FSP 57 .96 4:408 .46
25B 172714B Files 48 .81 4:636 .48

IB 173760B Resident 4 .06 152 .01

@List Sorted by Time
Total Xfers 5,884
Total Time 950:152
Gfi Frame Module Name /I Xfers % Xfers Time % Time

------- ------------------ ----------- ------- ----------- ------
3B 173740B DiskIO 335 5.69 311:752 32.81

13B 173014B Loader 2,207 37.50 264: 556 27.84
4B 173314B Swapper 794 13.49 95:874 10.09

I1B 173024B LoadState 95 1.61 87:020 9.15
12B 173020B LoaderBcdUtilities 973 16.53 69:160 7.27
24B 172724B Strings 635 10.'79 51:300 5.39
228 172730B Segments 432 7.34 26:182 2.75
lOB 1730408 Loade rUt il it i es 245 4.16 19:380 2.03
21B 172740B NonResident 59 1.00 15:732 1.65
25B 172714B Files 48 .81 4:636 .48
31B 172700B FSP 57 .96 4:408 .46

IB 173760B Resident 4 .06 152 .01

@Quit [Confirm]
)Kill session [confirm]

